Improving smallholder soil fertility and production through ISFM utilization in South Kivu, DR Congo

Mulumuna-wa-Lola Janvier^{1, 4*}, Roobroeck Dries², Bashagaluke Janvier ¹, Walangululu Jean¹, Merckx Roel³, Vanlauwe Bernard² and Boeckx Pascal⁴

1. Catholic University of Bukavu (UCB), DR Congo, 2. International Institute of Tropical Agriculture (IITA), Kenya, 3. KU Leuven (KUL), Belgium, 4. Ghent University (UGENT), Belgium

Contact: Janvier.MulumunawaLola@UGent.be

Introduction

- Crop productivity in many smallholder farms in South Kivu is chronically low
- ■The overriding cause to failing yields lies in limited availability of nutrients due to soil and management factors
- In smallholder agriculture in South Kivu use of chemical fertilizer is absent
- •One fertilizer recommendation can't be applied to the whole wide region where strong variability in crop yield and soil responsiveness is observed

Study area

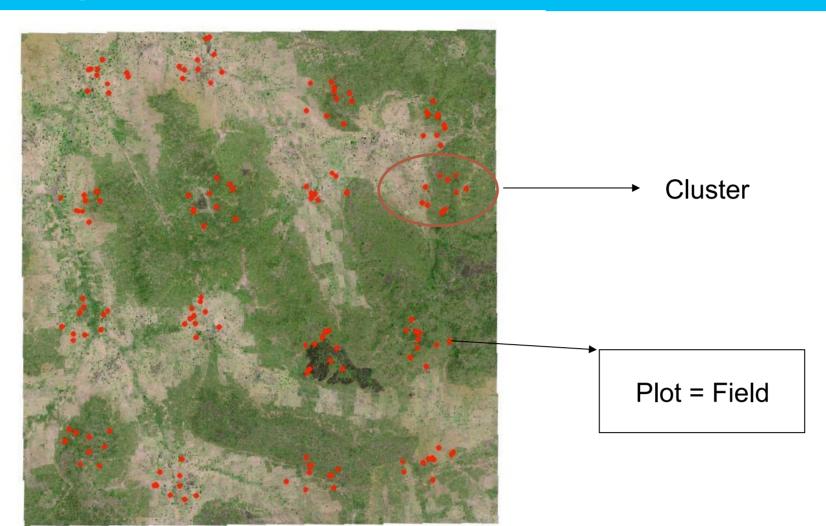


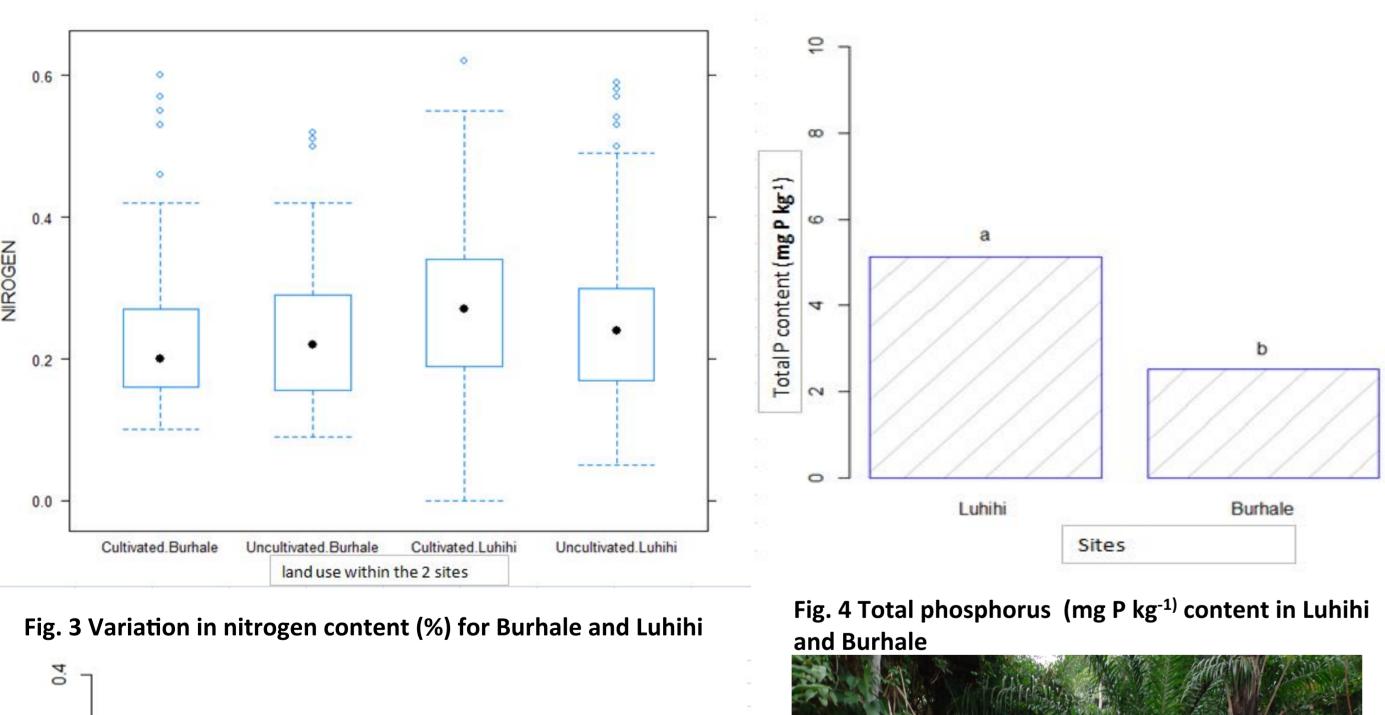
Fig. 1 Sentinel sites in South Kivu, DR Congo

Fig. 2 One sentinel site with clusters and plots

4 sentinel sites:

- 2 characterized: Burhale (South on map) and Luhihi (North on map)
- 2 non-characterized: Lurhala (South) and Kabamba (North)

A sentinel is divided into 16 equal clusters in which 10 plots are randomly selected


Variation of nutrient content in soils

Objective: to assess the variability of soil nutrient content and fertilizer use within two characterized sentinel sites (Burhale and Luhihi)

Methods:

534 composite soil samples were taken from two different depths (0-20 and 20-40 cm) in cultivated and uncultivated land using a stratified random sampling design. Differences were evaluated between sentinels, clusters, land use and soil depth

Results:

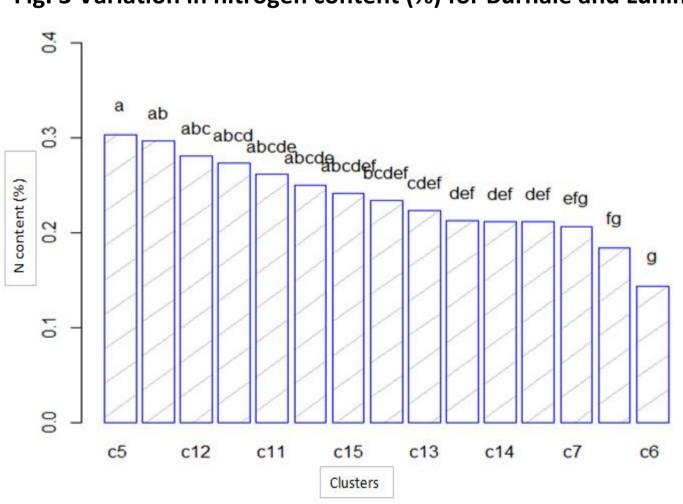
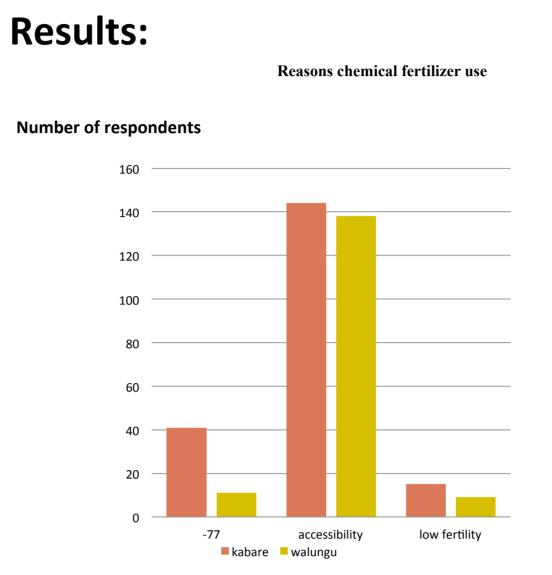


Fig. 5 Nitrogen content (%) variation within Burhale clusters


- ■No difference in K content in both sentinels, but variation was present within clusters and depth
- ■The studied area is acidic (top soil pH is 4.6 ± 0.34) (not shown)
- In both sentinels Ca ($<4 \pm 1.2$ cmolc kg⁻¹) and Mg ($<2 \pm 0.8$ cmolc kg⁻¹) is low;
- ■Soil organic carbon content is higher for cultivated plots in Luhihi (3.9 ± 1.6%) than in Burhale $(3.0 \pm 1.4\%)$
- ■Phosphorus deficiency is acute for Burhale (2.4 ± 3.2 mg P kg⁻¹) but less for Luhihi $(5.4 \text{ mg} \pm 4.2 \text{ P kg}^{-1} \text{ (Fig. 4)})$
- Nitrogen and phosphor content show variation between sites, cluster, soil depth and land use (Fig. 3,4 & 5)

Understanding major determinants of fertilizer use

Objective: identify socio-economic constraints that determine both organic and inorganic fertilizer use by smallholder farmers

Methods:

A survey on determinants of fertilizer use was administered to ca. 400 farmers who were randomly selected from villages within the study area

determinant	Estimate	Standard Error	Z value	Pr(> Z)
Intercept	1.102 e+01	4.986 e ⁺⁰³	0.002	0.99824
household people working fulltime in the farm	-1.285 e-01	3.156 e ⁻⁰²	-4.070	4.7 e-05***
(number)				
livestock ownship (yes,no)	1.259 e+00	5.512 e ⁻⁰¹	2.284	0.02235*
Land ownership (inheritance, purchase,	2.571 e 00	1.098 e ⁺⁰⁰	-2.341	0.01922*
otherwise)				
fertility status, farmers evaluation (high, medium,	2.980 e 00	1.079 e ⁺⁰⁰	2.761	0.00576**
low)				
Own stock	5.4143	1.0216	5.300	1.16 e-07**

Estimate | **Standard Error**

| Z value | Pr(>|Z|)

-6.319e⁺⁰⁰ | 3.219e⁺⁰⁰ -1.963 | 0.049627 household leader age > 50 ans $-1.754e^{+01}$ 3.279e⁺⁰³ 0.995731 7.727e⁺⁰⁰ 2.149e⁺⁰⁰ 0.000324 *** fertilizers access years of formal education of farmers (degree) Fig. 6 Chemical and organic fertilizer use in -3.6136 -3.893 9.91e-05 *** Kabare and Walunu in South Kivu, DRC

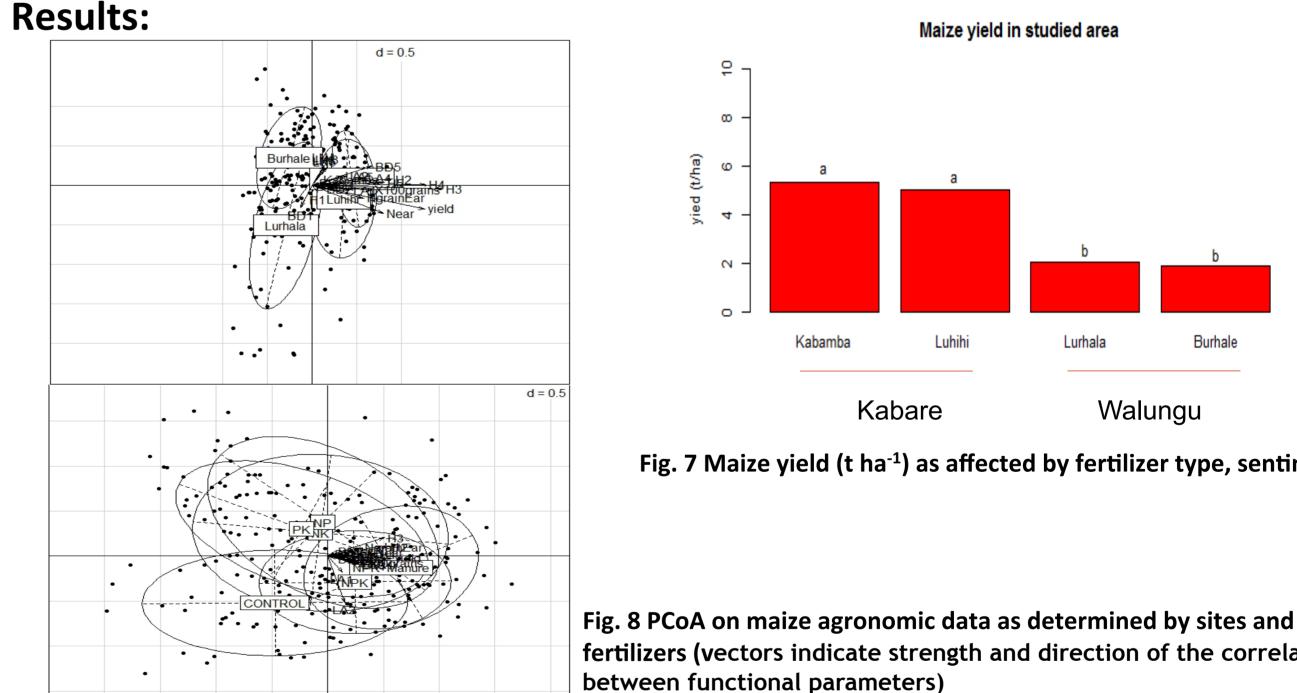
determinant

- Organic fertilizers are more used (91%) than chemical fertilizer (0.02%) (not shown);
- ■Logit model (Table 1 and 2) revealed that fertilizer use has (at household level):

≻Positive effect:

- Land and livestock ownership, poor soil type, higher level of education (organic fertilizer);
- Access to fertilizer (chemical fertilizer)

➤ Negative effect:


- Gender, household size, non involvement in rural development organizations, small size of farms, lack of extension and credit programs regarding fertilizers (organic);
- Age (>50 yr.), low level of education, non involvement in rural development organizations, fertilizers price and lack of extension and credit for chemical fertilizers

Soil nutrient constraints in smallholder farms

Objective: Determination of limiting soil nutrients to crop growth and yield Methods:

Productivity of maize was evaluated under omission of either nitrogen (N), phosphorus (P) or potassium (K) to identify their particular deficiency to crop growth and yield. A FYM+NPK treatment was included to assess constraints related to acidity and soil OM content

Trials were carried out in 4 sites: Burhale, Lurhala, Kabamba and Luhihi (Fig. 1)

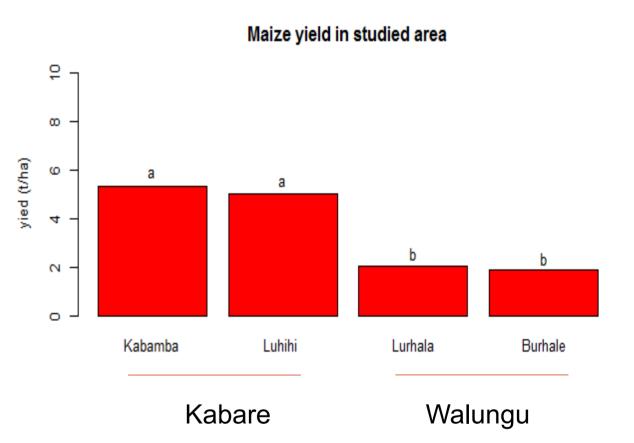


Fig. 7 Maize yield (t ha⁻¹) as affected by fertilizer type, sentinel and region

fertilizers (vectors indicate strength and direction of the correlation between functional parameters) •Key productivity parameters (plant height and yield) were consistently lower in

- Burhale and Lurhala (Walungu region) than in Kabamba and Luhihi (Kabare region) Strong geographical dependency of soil fertility: In the Walungu locations all fertilized treatments were significantly higher than
 - the non-fertilized control treatment, irrespective of nutrient omissions
 - In the Kabare locations, in turn, only full NPK application combined with manure was significantly higher from the control
- From the studied area:
 - Productivity of maize decreased when N and P were not applied, in these cases the availability of N showed to be more limiting than P
 - FYM application increased maize productivity (+effect on soil pH and OM content)

Conclusion

- •Most nutrient contents are lower in Burhale than Luhihi and showed strong variation between top- and sub-soil, cluster and land use
- ■N is the most limiting nutrient, followed by P (specifically for Walungu) and in some locations K
- •Increased adoption of inorganic fertilizer combined with FYM use will be pursued as a strategy to revitalize smallholder's agricultural sector in South Kivu

The authors thank VLIR -UOS for funding this research

