ULB

Using small low cost, robust and easily maintained decentralized hydraulic power stations in Central Africa

Prof. Patrick Hendrick

24 October *2017*

Problem

Key criteria to success of projects using Small Hydro Plant (SHP) in Developing countries:

- 1° Cost-reduction in manufacture of equipment
- 2° Cost-reduction in maintenance
- 3° Reliability
- 4° Robustness
- 5° Simplicity, ease of use

Archimedean turbine appears to be an appropriate solution to these requirements

Degré d'efficacité de la vis hydrodynamique \P

Expertise réalisée par l'Université Technique de Kaiserslautern pour déterminer le degré d'efficacité

- Proposal for a turbine technology "simplified" screw can be manufactured in workshops locally
- Tests and obtain characteristic curves for 6 operating configurations (combination of slope and pitch of the screw),
 - 2 optimized models used (p45H22 and p45H30) and determination of their speed limit

Archimedean screw turbine

Advantages of the screw turbine

- 1. Design, construction and maintenance are simple
- 2. Significant reduction in civil engineering, therefore the initial capital (civil engineering may represent up to 40% of SHP budget)
- 3. Screw tolerates many impurities without its functioning affected => coarse grids
- 4. Ecological technology / fish-friendly

Archimèdes screw (Luxemburg)

P: 30 kW

ηt: 86 %

De: 2,6 m Nt = 26 tr/min

3 screws

Inclination 22°

« Standard installation »

Tests, results, and laws obtained / Test bench

Parameters of screw turbine

Parameters of test bench

N= 2 srews

Pitch p for β : 30° and 45° Slope α of 22,5°, 30° and 37,5°

a. External parameters

- 1° Outer radius Re of the screw
- 2° Length of the screw L
- 3° The slope α (Head)

b. Internal parameters

- 1° Inner radius Ri of the screw
- 2° Number of helices N = 1, 2, ...
- 3° Pitch of helix (β) or period p

Tests, results, and laws obtained

<u>Model</u>

Diar	nètre	Ray	yon	Pa	L_{vis}		
Extérieur	Intérieur	extérieur	intérieur	β = 30°	β = 45°		
0,6250	0,3125	0,3125	0,1563	$p_{30} = 1,13$	$p_{45} = 1,96$	1,56	

$$\mathbf{H}_{22} (\alpha_{22,5^{\circ}}) = 0.60 \text{ m}; \quad \mathbf{H}_{30} (\alpha_{30^{\circ}}) = 0.78 \text{ m}; \quad \mathbf{H}_{37} (\alpha_{37,5^{\circ}}) = 0.95 \text{ m}$$

Mesurements

Q:Flow

N : Rotation speed

T: torque

Test bench

 $\eta_t = 2.\pi$. N. T_{mec} / ρ . g. Q. H

Example in Lubumbashi DR Congo

Power: 18 kW

Length: 4,5 m

Ext Diameter: 1,9 m

Nbre blades: 2

Burundi

- Lahmeyer (1983): **294** MW
- Sher engineering conseils sa (2013): 414 MW

Province Kayanza

Site selection

- Remote zone from national grid of electricity: reducing the socioeconomic situation of the population
 - Small activities of the population: lighting, hairdresser, grain mills, freezer, TV (cinema) ...
- Deposit of Coltan: Mining craftsmen are grouped together to look for job, they need electricity for their daily lives

Public services : Sheltered healthy and public school

Velocity sensor

> **Flowatch Impeller** Probe

Daily discharge variations

	Date: 03/01/2017 Hour: 9h40 to 10h24				Site Ry		na 1																
				Width: 10 m																			
Width [m]	0	0,4	0,8	1,2	1,6	2	2,4	2,8	3,2	3,6	4	4,4	4,8	5,2	5,6	6	6,4	6,8	7,2	7,6	8	8,4	8,8
Depth [m]	0,15	0,18	0,16	0,26	0,29	0,27	0,26	0,24	0,22	0,21	0,21	0,24	0,22	0,2	0,18	0,2	0,2	0,19	0,18	0,18	0,2	0,2	0,2
Velocity at 0,2H [m/s]																							
Velocity at 0,6H [m/s]	0,4	0,6	0,9	1	1	1	1,1	1,1	1,1	1,1	0,6	0,9	0,7	0,9	0,7	0,6	0,7	0,9	0,8	0,6	0,7	0,6	0,3
Velocity at 0,8H [m/s]																							
Segment discharge [m³/s]	0,01	0,04	0,06	0,10	0,12	0,11	0,11	0,11	0,10	0,09	0,05	0,09	0,06	0,07	0,05	0,05	0,06	0,07	0,06	0,04	0,06	0,05	0,01
Total discharge [m³/s]	1,5																						
	Hour: 12h 36 to 13h																						
Width [m]	0	0,4	0,8	1,2	1,6	2	2,4	2,8	3,2	3,6	4	4,4	4,8	5,2	5,6	6	6,4	6,8	7,2	7,6	8	8,4	8,8
Depth [m]	0,14	0,18	0,25	0,25	0,27	0,24	0,22	0,22	0,22	0,22	0,19	0,21	0,2	0,18	0,18	0,18	0,18	0,18	0,18	0,18	0,21	0	0
Velocity at 0,2H [m/s]																							
Velocity at 0,6H [m/s]	0,4	0,6	0,9	1,1	0,8	0,9	0,8	0,9	0,8	1	0,9	1	0,8	0,6	0,6	0,4	0,4	0,7	0,5	0,5	0,4	0,2	0,1
Velocity at 0,8H [m/s]																							
Segment discharge [m³/s]	0,01	0,04	0,09	0,11	0,09	0,09	0,07	0,08	0,07	0,09	0,07	0,08	0,06	0,04	0,04	0,03	0,03	0,05	0,04	0,04	0,03	0	0
Total discharge [m³/s]	1,3																						
	Hour:	15h9 to	15h32																				
Width [m]	0	0,4	0,8	1,2	1,6	2	2,4	2,8	3,2	3,6	4	4,4	4,8	5,2	5,6	6	6,4	6,8	7,2	7,6	8	8,4	8,8
Depth [m]	0,14	0,2	0,25	0,26	0,25	0,26	0,25	0,23	0,23	0,22	0,2	0,22	0,2	0,2	0,2	0,19	0,16	0,14	0,16	0,16	0,17	0	0
Velocity at 0,2H [m/s]																							
Velocity at 0,6H [m/s]	0,5	0,9	0,9	0,8	1	0,9	0,7	1,1	0,9	0,9	0,8	0,7	0,6	0,8	0,9	0,9	0,6	0,3	0,7	0,4	0,4	0	0
Velocity at 0,8H [m/s]																							
Segment discharge [m³/s]	0,01	0,07	0,09	0,08	0,1	0,09	0,07	0,1	0,08	0,08	0,06	0,06	0,05	0,06	0,07	0,07	0,04	0,02	0,04	0,03	0,03	0	0
Total discharge [m³/s]	1,3		-																-				
		_				_						_			_	_		_				_	-

Discharge variations along the day

Test bench (JLA)

- **1**
 -)9(

- Reservoir: hydraulic canal & Piping
- B-M turbine: JLA
- Load: gear motor
- Measurements: flow, head_{net}, torque and rotational speed

Control: frequency variation

Goal: test if turbine operates at real conditions of Mwogere river

Conclusions

- Solutions exist for small low cost, robust and easily maintained decentralized hydraulic power stations for Central Africa
- 2 proposed here ...

Thank you

jpkatond@polytechunilu.ac.cd jpkatond@hotmail.com Jean.bosco.niyonzima@ulb.ac.be patrick.hendrick@ulb.ac.be

