

Renewable energy deployment in Africa: opportunities, challenges & perspectives

Dr.Ir TCHOUATE HETEU Pépin

CEO & Director, DEECC Consulting, Belgique Email: <u>tchouateheteu@yahoo.fr</u> <u>www.deeccconsulting.com</u>

International Conference on Sustainable Energy for Africa (23-25/10/2017) Royal Academy for Overseas Sciences of Belgium

Outline

- 1. Electricity access in Africa
- 2. The energy paradox of Africa
- 3. Renewable Energy opportunities and challenges in

Africa

4. Conclusions

Africa hosts 17% of the world population but almost 50% of the population w/o access to modern energy live in Africa

	Population [10^6 inhabitants]	% world population
Africa	1265	16.7%
America	1010	13.3%
Asia	4516	59.6%
Europe	742	9.8%
Oceania	41	0.5%
World	7574	100.0%

Source: http://www.worldometers.info/world-population/

1-1 to 1.3 bn people in the world don't have access to modern sources of energy, of which approx. **600 millions in Africa**

Cooking : wood, charcoal, agricultural residues

Lighting : kerosene lamps, drycell batteries, candles, etc.

Electricity access is still very low in Sub-Saharan Africa less than 15% in rural areas

Projections are pessimistic about Africa's electricity consumption

	Per capita power consumption [kWh/y]
Senegal	210
Ghana	70
Nigeria	144
Cameroon	281
Ethiopia	70
Kenya	168
Uganda	90
Rwanda	22
Tanzania	99
Zambia	703
Namibia	1564
South Africa	4229

Few reasons for low power consumption.....?

- Low industrialization and industrial farming
- Low productive uses of energy
- Poor planning policy
- Low investment in the power sector
- Old distribution grids and high losses
- Unreliable electricity services : Load shedding in more than 25 SSA countries
- High cost of power generation due to emergency thermal plants
- Inappropriate grid expansion/densification tension considering low population density
- No steady enabling Environment for clean energy development

Africa's Energy poverty is a paradox

Oil resources are abundant & Africa a NET LNG exporter

World Africa **Share Africa**

2.6Tn Barrels 0.23Tn Barrels 8.8%

Renewable energy potential (1)

Hydro	Solar PV
280 GW, 10% world resources	Average sun irradiation 2000 à 2500 kWh/m²/y
Main rivers Congo : Grand Inga (44 GW), Gabon (> 10 GW), Cameroun (> 20 GW) Nil : Ethiopia (> 30 GW) Zambezi : Angola (>18 GW), Mozambique (>12 GW) Niger : Nigeria (> 10 GW)	100-300 kWhe/m²/y on 47% of SSA 75 – 200 kWhe/m²/y elsewhere

Additionally Small hydro sites are abundant across SSA

Renewable energy potential (2)

Biomass Geothermal Wind Hydro PV CSP CF CF > 30%-Total 40% 40% (TWh) 1,572 16 1,057 616 120 6 299 **Central Africa** 88 642 309 166 578 1,443 2,195 1,758 Eastern Africa Northern 78 257 69 935 1,090 1,014 225 Africa Southern 26 96 100 17 1,628 852 1,500 Africa Western 17 105 64 1 394 1,038 227 Africa 2,631 88 667 259 1,844 3,823 6,567 4,719 **Total Africa**

Estimated annual RE Potential: 20,600 TWh

TABLE 1: TECHNICAL POTENTIALS FOR POWER GENERATION FROM RENEWABLES (NUMBERS ARE SUBJECT TO UNCERTAINTY, TYPICALLY +/- 50%)

Despite a

quarter of the world's population estimated to live in Africa by 2050, only 25% of the hydropower potential is expected to be tapped

	Potential [GW]	Installed capacity 2016 [GW]	% exploited		expected capacity 2030 [GW]	power generated 2030 [TWh]
Geothermal	15	1.123	7.5%	4.224	3	21
Wind		3.862		7.85	101	304
Solar (PV&CSP)		2972		3.65	69	230
Other Renewables					36	96
Hydro		32.43		122	101	402

Renewable Electricity generation in Africa has considerably increased over the past 10 years.

2016 2011.3
2011.3
2011.3
38.28
)
)
4031
887.4
157.85
672.47
2 54.05
1 2 0 1 1 7 6 2

Way forward?

Africa final electricity demand to triple by 2030

FIGURE 7. SOUTHERN A FRICA : FINAL ELECTRICITY DEMAND BY COUNTRY

FIGURE 12: EAST AFRICA : FINAL ELEC TRICITY DEMAND BY COUN TRY

⁵ This subsection is based on the executive summary of: Southern African Power Pool: Planning and Prospects for Renewable Energy (IRENA, 2013b).

FIG URE 2. WEST A FRICA : F INAL ELEC TRICI TY DEMAND BY COUN TRY

FIG URE 16: C ENTRAL A FRICAN : FINAL ELEC TRICI TY DEMAND BY COUN TRY

Projections are pessimistic about Africa's energy consumption

Primary energy consumption per source and prospect

		mption toe)		ares %)
	2015	2035	2015	2035
Primary energy	13147	17157	100%	100%
By fuel:				
Oil	4257	4892	32%	29%
Gas	3135	4319	24%	25%
Coal	3840	4032	29%	24%
Nuclear	583	927	4%	5%
Hydro	893	1272	7%	7%
Renewables*	439	1715	3%	10%

Access to electricity is an essential component of accelerating human development

- Agriculture : water pumping for irrigation and livestock, added value food processing and conservation
- Education and health services enhancement
- Employment creation
- Improved social life and business development

Sustainable Improvement of electricity access in Sub-Saharan Africa

requires a significant scale-up of electricity infrastructure

Electricity demand in Africa is projected to triple by 2030, offering huge potential for renewable energy deployment

Access: 12-20m households to be connected annually (2017-2030)

Transmission & Distribution:

Grid expansion/intensification/densification still considered as main solution but offgrid electrification will play a key role in reaching the most dispersed rural population.

Generation: 250 – 302 GW renewable capacity to be added

Estimated Total Investment : \$50 - 70 bn per year on average (2017-2030). Generation capacity: \$30 - 45 bn/year Transmission&distribution : \$20 - 25 bn/year Internal wiring: \$2 – 3bn per year

Investment in Renewable electricity is limited by low tariffs and consumption in Africa

	Per capita power	%Renewable	%Renewable		
	consumption	energy	energy	LV domestic	LV commercial
	[kWh/y]	production	consumption	tariff [\$/kWh]	tariff [\$/kWh]
Senegal	210	10.42%	43.60%	0.18 - 0.2	0.26
Ghana	70	99.90%	92.70%	0.08 - 0.22	0.22 - 0.37
Nigeria	144	17.60%	87.30%	0.07 - 0.086	0.12 - 0.14
Cameroon	281	74.30%	77.40%	0.09 - 0.18	0.14 - 0.18
Ethiopia	70	99.90%	92.72%	0.012 - 0.031	0.027 - 0.034
Kenya	168	75.00%	78.50%	0.025 - 0.205	0.07 - 0.13
Uganda	90	78.60%	89.22%	0.17 - 0.19	0.10 - 0.16
Rwanda	22	39.00%	88.40%	0.10 - 0.23	0.23
Tanzania	99	42.30%	86.70%	0.045 - 0.156	0.09 - 0.175

Off-grid mini-grids are the optimal solution for energy access in dispersed rural areas

					Kenya Power	TAJESCO
Electricity Delivered	N/A	DC	AC	AC	AC	AC
Upfront Payment (\$)	12	35	Varies	10 - 20	150 - 350	120 - 250
Ongoing Costs	×	✓	×	\checkmark	✓	✓
Installation Time	N/A	Short Install Time	✓ Almost plug and-play	 ✓ Quickly Deployable 	Multi-year Pro	x ⊳ject Timelines
Reliability	× Poor quality lighting	¥ Limited Product Life	¥ Requires regular maintenand e	✓ Battery Storage	Intermittent	× ∶Power Cuts
Full Energy Ladder? (Appliances / Productive Loads)	×	⊭ Only Low- Power DC Devices	✓ Yes, but expensive	✓ Grid- equivalent power	Full Elec	ctrification
* 1-year lease-to-own with 2-year wa Main Grid Integration 20	arranty. PowerGen a	assumed a 3 year life Not Possible	e for the SHS ¥	✓ Built to int'l grid standards	N/A	N/A

Mini-grids build the energy system of the future from the grid edge in...

Developed Country Grid —

- Less-Developed Country Grid

Existing infrastructure and entrenched incumbents makes transition to the future grid more challenging

> Lack of incumbent infrastructure provides an opportunity to build the power system architecture of the future from near scratch

Why will minigrids play an important role in electricity access in Africa?

- Tap into Africa's enormous Renewable Energy resources
- Faster deployment and more reliable than grid expansion
- Highlight real cost of electricity
- Drive new electrification policies and partnerships
- Stimulate electricity demand and PUE in rural areas
- Drive economic development
- prepare the ground for future grid expansion

Valuable policy and regulations changes are needed

Business & Ownership Models	Public, Private Public-private franchisee, PPA
Specific regulations	Clear demarcation of offgrid areas, Site allocation – top-down vs bottom-up Clear Licensing conditions & process, Tariff setting and approval, What happens when the main grid arrives?
Support mechanisms	Independent of technology, rural electrification is not economically viable. Transparency in subsidy types and allocation Keep the parity between off and ongrid customers

Conclusions (1)

Africa's energy situation is paradoxal with many inequalities:

- The per capita energy consumption in Africa is a quarter of the average world PCEC
- 75% of Africa's energy is consumed in Northern and Southern Africa, where 25% of the population live.
- Less than 10% in rural areas resp. around 40% of urban people have access to electricity
- African countries are net exporter of energy resources

Sustainable development of Africa's energy sector is possible:

Technology options :

- Renewable energy potential (10000 20000 TWh/y)
- Rational use of fossil energy resources
- Valorisation of flare gas (41-58 GW, 356-511 TWh/y)

Requirements:

- Rural Electrification Master Plan to include offgrid strategy
- Off-grid Policy towards an enabling environment for strategic offgrid development
- Capacity building of stakeholders
- New financing and business models that take into account private sector involvement and support local SME contribution

Grand-Inga requires about \$50bn

50 million shares @ \$1000 5 million shares @ \$10,000 1 million shares @ \$50,000 500,000 shares @ \$100,000 +

+

other combinations