Institut Royal Colonial Belge

SECTION DES SCIENCES NATURELLES
ET MÉDICALES

Mémoires. — Collection in-8°. Tome XXV, fasc. 1. Koninklijk Belgisch Koloniaal Instituut

SECTIE VOOR NATUUR- EN GENEESKUNDIGE WETENSCHAPPEN

Verhandelingen. — Verzameling in-8°. Boek XXV, afl. 1.

Le rayonnement solaire à Léopoldville (Congo belge)

PAR

G. DUPONT et W. SCHÜEPP

DU BUREAU DE RAYONNEMENT DU SERVICE MÉTÉOROLOGIQUE DE LA COLONIE

Avenue Marnix, 25
BRUXELLES

Marnixlaan, 25 BRUSSEL

1954

PRIX: F 75

Le rayonnement solaire à Léopoldville (Congo belge)

PAR

G. DUPONT et W. SCHÜEPP

DU BUREAU DE RAYONNEMENT DU SERVICE MÉTÉOROLOGIQUE DE LA COLONIE. Mémoire présenté à la séance du 20 février 1954.

AVANT-PROPOS

M. Walter Schüepp nous est arrivé de l'Observatoire de Rayonnement de Davos à la fin de 1950 et le premier travail que je lui ai demandé consistait à réunir les données de base du rayonnement solaire tombant à Léopoldville. Les mesures faites ont embrassé un domaine beaucoup plus vaste que je ne l'envisageais tout d'abord, car aux données énergétiques totales se sont notamment ajoutées de nombreuses mesures dans diverses bandes spectrales.

Une première partie du travail est présentée ici : celle se rapportant au rayonnement direct du soleil et au rayonnement diffusé par le ciel. Les mesures ont atteint une haute précision grâce à des étalonnages très soignés qui ont permis d'établir la relation entre nos instruments de Léopoldville et ceux de grands observatoires étrangers.

M^{me} G. Dupont a étroitement collaboré avec M. W. Schüepp pour les dépouillements et les étalonnages, et l'équipe de clercs indigènes de la station de rayonnement de Léopoldville a contribué avec grand dévouement à la présentation du mémoire.

N. VANDER ELST,

Chef du Service de Météorologie du Congo belge et du Ruanda-Urundi.

PRÉSENTATION

- 1. L'énergie arrivant du soleil sous forme de rayonnement est le plus important des facteurs qui interviennent dans les phénomènes météorologiques généraux; cette énergie est la seule qui provienne de l'extérieur et elle alimente ce moteur très compliqué qu'est l'atmosphère. Le rayonnement solaire revêt aussi une importance capitale dans l'étude de très nombreux phénomènes biologiques, qu'il s'agisse de physiologie animale ou végétale ou qu'il s'agisse des influences beaucoup plus complexes du climat sur la vie individuelle ou sociale des groupements humains.
- 2. Il n'y avait jusqu'ici que très peu de renseignements précis sur le rayonnement dans les régions équatoriales, et pratiquement pas pour le Congo belge : deux missions (Coutrez-Bossy, puis Herrinck (¹) ont fait des mesures actinométriques pendant des périodes allant de quelques jours à quelques mois, mais des mesures systématiques n'ont été faites qu'à partir du moment où le service météorologique de la Colonie a installé son laboratoire de Rayonnement à Léopoldville dans le courant de 1950. A partir de 1951, M. W. Schüepp, de l'Observatoire de Rayonnement de Davos, a pris la direction de ce laboratoire, et les mesures systématiques présentées aujourd'hui représentent une longue série d'observa-

⁽¹⁾ HERRINCK P., Observations photométriques du ciel nocturne et observation de rayonnement solaire et de températures au plateau des Bianos (Congo belge) (Mém. I. R. C. B., 1953).

tions d'où peuvent se tirer des renseignements du plus haut intérêt.

3. Les mesures publiées ici couvrent près de deux ans d'une manière continue. Elles résultent de techniques raffinées et donnent des valeurs numériques d'une réelle importance pratique. Elles séparent quantitativement l'énergie provenant directement du soleil et l'énergie solaire diffusée par le ciel et montrent la très curieuse incidence de la nébulosité sur la répartition de ces énergies.

Il apparaît, en effet, que, même lorsque la quantité de nuages couvrant le ciel est appréciable, la diminution du rayonnement direct est partiellement compensée par l'augmentation du rayonnement diffusé. Ceci explique les « coups de soleil » dont on peut souffrir même par temps nuageux.

4. Une première application qui n'est pas citée dans le mémoire, mais qui a néanmoins une assez grande importance au Congo, a été la révision des tables d'insolation en usage pour le calcul des conditionnements d'air dans certains bâtiments en construction à Léopoldville.

N. VANDER ELST.

Depuis 1950, un observatoire de rayonnement est en service à Léopoldville. Les mesures faites en 1950 ne portant que sur une partie de l'année et présentant des lacunes inévitables, dues à la mise au point de toute nouvelle installation, nous nous sommes servis de l'ensemble des données recueillies en 1951 pour tenter une première étude du rayonnement au Congo.

Les résultats obtenus ne peuvent certes pas être considérés comme définitifs, les enregistrements sur une seule année ne suffisant pas pour une étude climatologique approfondie; ils permettent cependant une première idée de l'intensité de la radiation solaire sous l'équateur et de ses relations avec les autres facteurs climatologiques: température, durée d'insolation, nébulosité, etc.

Appareils utilisés et méthodes de dépouillement.

A. Rayonnement global G.

Le pyranomètre nº 2013 du type Eppley à pile thermoélectrique de 50 soudures, relié à un potentiomètre électronique enregistreur Brown nº 535.531, nous donne un enregistrement continu du rayonnement global G. Sept fois par jour, on fait des marques horaires et une vérification de la position zéro en couvrant l'instrument avec un couvercle en aluminium isolé thermiquement de l'extérieur. Chaque fois, l'instrument est remis à l'heure pour éviter des erreurs dues à l'irrégularité du déroulement du papier enregistreur. Les erreurs dues

à l'inertie de l'instrument sont très faibles et peuvent être négligées. Un appareil détecte les pannes de courant et leur durée, ce qui permet d'apporter les corrections nécessaires. En plus, les données de l'Eppley 2013 sont comparées à celles d'un deuxième instrument qui marche simultanément et, en cas de pannes de courant, un instrument purement mécanique, le pyranomètre Robitzsch-Siap 0081 permet de combler la lacune. Les instruments sont placés sur une tour où l'horizon est bien dégagé, de manière que l'on n'ait pas à craindre de pertes dues à des obstacles quelconques.

Pour chaque jour on obtient un diagramme où l'on rétablit la ligne exacte du zéro grâce aux différentes mises à zéro faites régulièrement. Les courbes sont planimétrées (de 06h à 12h et de 12h à 18h) pour obtenir les sommes demi-journalières du rayonnement. Ces valeurs sont multipliées par un coefficient d'étalonnage déterminé à l'avance.

D'autre part, les valeurs horaires pour chaque heure sont mesurées (ordonnée moyenne de la portion de courbe 10 minutes avant et 10 minutes après l'heure exacte). Ces dernières valeurs sont quelquefois difficiles à déterminer, surtout pendant une insolation intermittente, car il faut faire attention de donner le vrai poids aux petites valeurs maintenues un certain laps de temps et aux grandes valeurs qui ne sont souvent que des pointes.

Bien que l'étalonnage avec le pyrhéliomètre standard Angström 119, étalonné à Davos en avril 1951, ait révélé une variation du facteur d'étalonnage de notre Eppley par rapport à la hauteur du soleil, telle que la sensibilité diminue avec la hauteur du soleil à partir de 25° (pour les hauteurs plus faibles la méthode est incertaine), on a adopté un facteur constant pour le dépouillement des sommes journalières. On a choisi pour valeur constante la sensibilité correspondant à 45° de hauteur. Ceci est justifié pour le rayonnement du ciel, où, pour une

luminosité uniforme, la moitié de la lumière reçue par la surface provient de hauteurs plus basses que 45° et l'autre moitié de hauteurs plus élevées que 45°. Mais pour la fraction du rayonnement global qui provient directement du soleil, ceci n'est pas valable. A l'aide de la courbe moyenne annuelle de la variation journalière du ravonnement global et de celle du ravonnement du ciel (fig. 45, p. 53) on trouve que le ravonnement global réel, compte tenu de la variation de la sensibilité avec la hauteur du soleil, est de 1,3 % plus grand que la valeur obtenue avec le facteur constant pour 45° (voir tableau 9, p. 37). D'autre part, la surface movenne obtenue à l'aide des moyennes horaires est de 3,3 % plus grande que la moyenne des surfaces journalières planimétrées. La différence restante de 2,0 % entre les deux méthodes est due surtout à la difficulté d'estimer sur les courbes une position moyenne correspondante à la valeur horaire pendant les périodes d'ensoleillement intermittant, et aux erreurs de planimétrages pendant les périodes instables.

Enfin, il est possible qu'il existe encore une certaine sélectivité telle que la sensibilité pour le rayonnement diffus du ciel soit différente de la sensibilité pour le rayonnement direct du soleil. Cet effet n'est pas encore étudié, mais une comparaison avec un pyranomètre Moll (caractérisé par une très faible sélectivité et une sensibilité assez indépendante de la hauteur du soleil) prouve que pour les grandes intensités, l'effet de la sélectivité ne dépasse pas 2 % de la valeur.

Nous n'avons pas tenu compte de ces erreurs systématiques, déterminées *a posteriori*, et avons décidé de suivre strictement les règles suivantes pour le dépouillement : Pour les surfaces *planimétrées* on emploie la *sensibilité constante* trouvée pour une hauteur du soleil de 45°.

Pour les valeurs horaires, on adopte le facteur constant, correspondant à une hauteur du soleil de 45° pour le rayonnement du ciel H seulement; quant à la com-

posante horizontale du rayonnement direct du soleil S = G' - H, on emploie la sensibilité calculée pour la hauteur actuelle du soleil. Ainsi, le rayonnement global G est calculé indirectement par la formule (1):

$$G = H + (G' - H). f \tag{1}$$

où f est le facteur variable, et G' le rayonnement global mesuré sur l'enregistrement. Il n'est pas question d'employer un système équivalent pour les sommes journalières. Seul, l'emploi d'un pyranographe Moll et des sommes horaires à la place des valeurs momentanées permettra d'éliminer complètement cette discordance à partir du 1^{er} janvier 1953.

Tous les résultats sont donnés en petites calories par centimètre carré de surface horizontale se basant sur l'échelle pyrhéliométrique standard Smithsonian scale 1913, représentée par l'Angström-scale + 3,5 %.

B. Rayonnement du ciel H.

Le pyranomètre Eppley 2011 relié à un enregistreur Brown 535.532 est muni d'une bande cache-soleil qui cache le long du trajet journalier du soleil une bande du ciel d'une largeur angulaire de 5°. La perte de rayonnement diffus est évaluée à 5 % du rayonnement du ciel par ciel couvert, et à 8 ou 10 % par ciel peu nuageux. Pour une luminosité uniforme la perte géométrique serait de 5,5 %. W. Schuepp [1] (*) a prouvé qu'une correction constante de + 5 % est suffisante pour fournir des valeurs climatologiques du rayonnement du ciel. Le rayonnement du ciel n'a pas ces variations brusques qu'on observe si fréquemment dans les enregistrements du rayonnement global. C'est pourquoi on n'a dépouillé que les valeurs horaires de H.

^(*) Les chiffres entre parenthèses renvoient à la bibliographie, page 18.

C. Ensoleillement.

La durée de l'insolation S est calculée d'après les données d'un héliographe Campbell-Stokes. Quoique très sensible, cet appareil ne donne des indications nettes que lorsque le soleil est à environ 5° au-dessus de l'horizon. C'est pourquoi, dans le calcul du rapport de la durée d'insolation S à la durée possible du jour So, nous avons pris comme So la durée comprise entre les moments où le soleil se trouve le matin et le soir à 5° au-dessus de l'horizon.

D. Température moyenne.

Elle est mesurée dans de bonnes conditions sous un abri météorologique.

E. La nébulosité.

7 fois par jour la nébulosité a été observée par W. Schüepp [2]. La quantité a été estimée séparément pour les trois niveaux principaux des nuages : hauts, moyens et bas. En plus, on a noté la nébulosité totale comprenant aussi les cirrus les plus faibles (qui échappent à beaucoup d'observateurs) et la nébulosité sans cirrus qui est liée plus étroitement au rayonnement que la nébulosité totale.

Toutes les évaluations de valeurs horaires, les planimétrages, etc, sont faits avec le plus grand soin, mais il est évident que pour les jours où la nébulosité varie beaucoup, de même que pour ceux où l'intensité change brusquement avec une amplitude considérable, certaines valeurs sont sujettes à erreur.

D'autre part, pour les très faibles valeurs de rayonnement nous avons constaté que l'Eppley réagissait peu et tendait à donner des valeurs plus basses que la réalité. Mais les erreurs qui pourraient se glisser à cause de cela dans les valeurs journalières disparaissent dans les moyennes décadaires et mensuelles.

Le rayonnement global (sommes journalières).

Les tableaux I et Ib nous donnent les sommes demijournalières du rayonnement global pour les années 1951 et 1952, les movennes journalières par quinzaine et par mois pour le matin et l'après-midi. Ces variations sont représentées graphiquement dans la fig. 1 (entre les pp. 40 et 41). On remarquera la baisse très nette des movennes pendant la saison sèche (mai, juin, juillet, août) et un autre minimum moins accentué pendant la petite saison sèche en janvier. Les deux maxima se situent aux mois d'avril et de novembre, nettement en retard relativement à la position la plus élevée du soleil le 10 mars et le 5 octobre. Le retard en avril est encore en contradiction avec la variation de l'intensité solaire due à la distance de la planète du soleil; quant au maximum de novembre, il est en accord avec cette variation astronomique. On remarque rarement que deux jours de mauvais temps se suivent ; des séries de 2 ou même 3 jours de beau temps arrivent plus souvent, mais l'impression dominante est une très grande variabilité du rayonnement.

Le tableau 2 (p. 28) donne les moyennes décadaires du rayonnement, qui sont celles considérées en général comme les plus représentatives. Dans le tableau 2 bis (p. 29) sont portés le maximum et le minimum enregistrés par décade et par mois. Le maximum absolu pour l'année se situe au mois d'octobre et le minimum absolu, au mois de juin. Ces données sont représentées dans la fig. 2 (entre les pp. 40 et 41). Le rayonnement enregistré le matin est toujours plus faible que celui enregistré l'après-midi. Ceci est un effet de la nébulosité, car les St et Sc qui dominent le matin se lèvent vers midi et, soit se transforment en Cu et Cb, soit sont remplacés

par des Ac trans à niveau assez élevé. La différence entre matin et après-midi diminue au début de mai et fin septembre, au moment du changement de saison. La courbe des maxima varie de la même manière que celle du rayonnement moyen, celle des minima est beaucoup moins représentative.

Dans le tableau 3 (p. 31) sont portées les températures moyennes journalières par décade, de janvier à décembre 1951; moyennes pour les heures de jour entre 06 et 18h et pour la journée entière.

Le tableau 4 (p. 32) donne les maxima et minima absolus enregistrés par décade. Les fig. 3 et 4 représentant ces données nous permettent de constater que le rayonnement global et la température varient dans le même sens, mais avec une amplitude différente (plus faible pour la température). Le maximum de la température est antérieur à celui du rayonnement, contrairement à ce que l'on serait en droit d'attendre.

Les tableaux 5 et 5 bis (p. 33) donnent le total et la moyenne journalière d'insolation S et de l'insolation relative S/So pour chaque mois, la nébulosité avec cirrus N et la nébulosité sans cirrus N'. Les figures 5 et 5 bis représentant ces résultats nous permettent de constater que ni l'insolation, ni la nébulosité n'expliquent la variation annuelle du rayonnement ; il semble que les variations de la hauteur du soleil avec la déclinaison et celles du trouble atmosphérique avec les saisons l'emportent sur les influences de l'insolation et de la nébulosité. D'autre part, nous constatons que les deux courbes de la nébulosité sont nettement opposées à celle de l'insolation. J. V. Hann [3] a exprimé cette observation par une formule :

$$N + S/So = 100$$
 (2)

que nous voulons vérifier pour le Congo.

Le tableau 6 (p. 34) et la figure 6 (p. 44) nous donnent les résultats obtenus suivant que l'on considère la nébulo-

sité totale N ou la nébulosité sans cirrus N'. Dans les deux cas, le résultat obtenu est supérieur à 100, en moyenne 118 pour la nébulosité totale et 107 pour la nébulosité sans cirrus. Cela provient du fait que les cirrus sont presque toujours transparents pour le soleil et que même une fraction considérable de nuages bas et moyens sont transparents pour un soleil très haut. A Blue-Hill Haurwitz [4] trouvait N + S/So = 112 ce qui se rapproche de nos résultats; pour l'Europe, on observe en plaine N + S/So = 103 en moyenne, et en montagne 107 (G. Perl [5]). On remarque que près de l'Équateur les nuages sont beaucoup plus transparents au soleil que sous les latitudes moyennes.

L'étude du rayonnement global est en général basée sur la formule d'Angström [6] :

Qs = Qo [
$$a_1 + (1 - a_1)s$$
] où $a_1 = \frac{Qs/Qo - s}{1 - s}$ (3)

où Qo est le rayonnement pour une journée de 100 % d'insolation, Qs le rayonnement observé, et

s = S/So l'insolation relative dans nos tableaux. Une seule année d'observation est nettement insuffisante pour déterminer l'a de la formule d'Angström. Nous avons tout de même fait le calcul pour obtenir un ordre de grandeur du coefficient.

Il faut d'abord déterminer Qo. Nous avons pris pour chaque mois la moyenne des jours où le pourcentage d'insolation était supérieur à 90 % (s > 0.90). Qs étant la moyenne journalière pour chaque mois (voir tableau 1), nous avons déduit α_1 (S/So est pris du tableau 5bis, p. 33).

Nous avons trouvé un coefficient très variable au cours de l'année (de 0,37 à 0,63) avec une moyenne de 0,47. Nous avons refait les calculs en prenant cette fois Qo', le rayonnement maximum pour chaque mois:

$$a_2 = \frac{Qs/Qo' - s}{1 - s} \tag{4}$$

Les nouveaux coefficients a_2 obtenus varient de 0,37 à 0,53 avec une moyenne de 0,41.

Enfin, nous avons calculé le rapport $\alpha_3 = Q/Qo$ (5) qui est la définition même du coefficient d'Angström, c'est-à-dire le rapport du rayonnement pour un jour sans insolation à celui d'un jour d'insolation maxima. Malheureusement, pour les mois de mars et d'avril, ce cas n'est jamais arrivé et pour les autres mois, sauf mai et septembre, les données portent sur un seul jour seulement. Ainsi, ce n'est que la moyenne annuelle qui compte. Nous trouvons $\alpha_3 = 0.24$.

Ces résultats sont groupés dans le tableau 7, p. 35. Le tableau 7 bis nous permet de faire une comparaison avec le rayonnement sous les latitudes moyennes.

Les valeurs a, y sont beaucoup plus faibles en plaine, et plus fortes en montagne, qu'à Léopoldville. Il semble que la densité optique moyenne de la nébulosité à Léopoldville corresponde mieux aux conditions de montagne des latitudes movennes, bien que la grande quantité de vapeur d'eau dans l'atmosphère tropicale nous mettrait en droit d'attendre le contraire. En ce qui concerne les valeurs a₃, il n'y a pas de différence entre les latitudes movennes et Léopoldville, sauf avec la station de haute montagne de Davos, où a3 est nettement au-dessus de la movenne. La grande différence entre a 1 et a 3 prouve que la linéarité de la loi d'Angström n'est pas gardée, mais qu'en réalité l'intensité moyenne du rayonnement pour un ciel couvert à 9/10 tombe brusquement vers celle d'un ciel complètement couvert par des nuages épais. Un effet semblable est signalé à Davos [10], où la différence entre a₁ a₃ est de 0,12, contre 0,23 à Léopoldville.

D'autres, comme T. Oti [11], pensent que la fornule ne peut s'appliquer qu'en faisant varier a suivant les différentes formes de nuages; ceci fera l'objet d'une autre étude. Enfin MM. NICOLET et DOGNIAUX [12] ont constaté que la formule était difficilement applicable et ont conclu qu'on devrait tenir compte de la déclinaison dans l'application de la formule classique.

En ce qui nous concerne, en partant du coefficient moyen annuel 0,47, nous avons fait une vérification par le calcul. Les valeurs trouvées pour une journée présentent d'assez fortes divergences, qui s'atténuent dans les moyennes décadaires et ne dépassent pas 10 % dans les moyennes mensuelles, ce qui fait encore d'assez fortes divergences. Pour la moyenne annuelle, la concordance est bonne, mais il semble que pour obtenir des résultats proches de la réalité, il faudrait aussi employer un coefficient variable au cours de l'année.

Le tableau 8 nous donne la fréquence des différentes valeurs du rayonnement au cours de l'année. Les fortes valeurs sont beaucoup plus fréquentes en mars et avril et les faibles en juin, juillet et août.

Les valeurs horaires du rayonnement.

Les valeurs horaires du rayonnement global et du rayonnement du ciel sont données dans les tableaux 9 (p. 37) et 10 (p. 39). Leurs variations par mois nous donnent les courbes des figures 9 (p. 46), 10 (p. 47), 11 (p. 48) et 12 (p. 49) et leurs variations annuelles (moyennes horaires) la figure 13 (p. 50). Le maximum moyen du rayonnement global a lieu seulement vers 13 h, alors que celui du rayonnement du ciel est à 11 h. Ceci est dû au caractère de la nébulosité, qui est plus épaisse l'avant-midi et diminue fortement le rayonnement direct du soleil tout en augmentant l'intensité du rayonnement du ciel. L'après-midi, le rayonnement direct est sensiblement plus fort, mais la nébulosité moins dense produit un ravonnement diffus moins fort que le matin. C'est pourquoi le maximum du ravonnement du ciel tombe avant midi, alors que le maximum du rayonnement global se produit seulement à 13 heures.

Le tracé des isophlètes (figures 7 et 8, pp. 44-45) montre des maxima en avril et novembre, avec un faible maximum secondaire en septembre. Le maximum principal tombe aux mois de mars et avril. Un minimum accentué se produit au mois de juillet et un faible minimum secondaire au mois de janvier. Ce dernier était plus accentué en 1951 qu'en 1952. Les extrêmes pour le rayonnement du ciel sont déphasés par rapport à ceux du rayonnement global. Les maxima du rayonnement du ciel tombent aux mois de mars et octobre, c'est-à-dire un mois avant les maxima correspondants du rayonnement global. En plus, ces maxima et minima sont en phase avec les variations de la déclinaison. Le maximum principal tombe au mois d'octobre et le minimum principal au mois de juin.

L'asymétrie journalière est encore plus nette quand on regarde le rapport entre le rayonnement du ciel et le rayonnement global dans le tableau 11.

Tableau 11

Ra	pport (du ra	voan	m-nt	du c	iel at	ı raye	onnen	nent g	global	l	_
Heure	07 h	08 h	09 h	10 h	11 h	12 h	13 h	14 h	15 h	16 h	17 h	
H/G	.8-1	.74	.71	.65	.58	.52	.47	.44	.4.5	.52	.68	

Le rapport présente sa plus faible valeur entre 14h et 15h et sa plus haute le matin. Entre 10 et 14h, le soleil est si haut que le rapport pour une nébulosité invariable serait constant; la forte variation du rapport caractérise ainsi la forte diminution de la densité optique de la nébulosité entre 10h et 14h.

Dans les figures 14 (p. 51) et 15 (p. 52) sont illustrées les comparaisons entre le rayonnement à Léopoldville et le rayonnement en latitude moyenne.

Pour le rayonnement global, nous avons choisi comme points de comparaison les localités suivantes : Kew [13], Bruxelles — Uccle [15], Paris St-Maur [7], Zurich [14], Blue Hill [4], et Davos [10] [16] (station de montagne à 1600 mètres en Suisse). Les données de ces stations sont basées sur la *Smithsonian Scale* (sauf celles de Kew, mais nous avons fait les réductions).

Les cinq stations de latitude moyenne, en plaine, donnent des résultats très semblables, sauf en hiver, où le rayonnement à KEW et à UCCLE est nettement plus faible que celui enregistré à PARIS et à ZURICH, et où, par contre, celui de BLUE HILL est beaucoup plus fort.

Les variations du rayonnement à la station de montagne sont de même sens que celles des autres stations, mais avec des intensités beaucoup plus fortes (sauf en hiver, où les intensités de Blue Hill dépassent celles de Davos).

La moyenne annuelle est surtout fonction de la latitude et augmente dans le sens Kew-Uccle-Paris-Zurich Blue Hill et avec l'altitude (Zurich-Davos).

A cause de sa proximité de l'équateur, Léopoldville présente un rayonnement dont la variation est très différente de celle des autres stations considérées. Le minimum principal à Léopoldville coïncide avec le maximum enregistré dans les stations de latitude Nord et l'amplitude de la variation annuelle est sensiblement plus faible que celle des variations en latitude moyenne cependant encore plus forte que nous ne l'aurions prévue pour une position si proche de l'équateur. De plus, l'onde simple des latitudes moyennes cède la place à une onde double à l'équateur.

La moyenne annuelle du rayonnement à Léopoldville est nettement supérieure à celle des stations de latitude moyenne, même quand ce sont des stations de montagne. Pourtant, l'intensité du rayonnement en juin à toutes les stations de latitude moyenne dépasse celle enregistrée en avril à Léopoldville (maximum). Cela vient de la durée très longue des journées en juin, en latitude moyenne, mais si nous considérons les maxima moyens de l'intensité (valeurs horaires), nous avons des valeurs beaucoup plus fortes à Léopoldville qu'aux autres stations (les valeurs de juin, mois minimum, sont même plus fortes que les maxima moyens de Kew à son époque la plus intense de rayonnement).

Conclusion.

Le rayonnement à Léopoldville est donc caractérisé par une forte intensité entre 10 heures et 14 heures, par une variation annuelle d'amplitude beaucoup moins forte qu'en latitude moyenne (mais qui atteint quand même 35 % de l'intensité maxima) et par un fort déphasage des maxima journaliers du rayonnement global (maxima après midi) et du rayonnement du ciel (maxima avant-midi).

BIBLIOGRAPHIE

- Schüepp, W., Enregistrement séparé des composantes du Rayonnement solaire. (Météo-Congo, 1952, 11, Léopoldville).
- 2. Schüepp, W., Des limites subjectives et méthodiques des observations de la nébulosité. (Météo-Congo, juillet 1952, 3, Léopoldville).
- HANN, J. v. et Suering, Lehrbuch der Meteorologie, 4° édition (C. H. Tauchnitz, Leipzig, 1926).
- 4. HAURWITZ, B., Day-time radiation at Blue-Hill Observatory in 1933 (Weather Burcau, Cambridge U. S., 1934).
- PERL, G., Ueber die Beziehung zwischen Tagesmitteln der Bewölkung und relativer Sonnenscheindauer (Archiv für Meteorologie, Bioklimatologie und Geophysik, 1949, B, Heft 1, 200).
- Angström, A., Recording solar radiation (Meddelanden Statens Meteorologiska och Hydrologiska Anstalt, 1928, 4, Nr 3, Stockholm).
- 7. Maurain, Étude pratique des rayonnements solaire, atmosphérique et terrestre (Gauthiers-Villars, Paris, 1937).
- 8. Kimball, H. H., Measurements of solar radiation intensity and determination of its depletion by the atmosphere with bibliography of pyrheliometric measurements (*Monthly Weather Review*, 1927, 55, Nr 4, 155).
- 9. Lunelund, H., Records of Solar Radiation in Helsingfors (Societas Scientiarum Fennica. Commentationes Physico-Mathematicae, VII, 1, 1933, 22 et 26).
- PROHASKA, F., Die Globalstrahlung in Davos (Gerlands Beiträge zur Geophysik, 1943, 59, 247).
- Oti, T., Possible amount of total radiation in Japan (Journal of the Meteorological Society of Japan, 1939, 17, 336).
- 12. NICOLET, M. et DOGNIAUX, R., Étude de la radiation globale en Belgique (Institut Royal Météorologique Belgique, 1951, Mémoires, 47).
- 13. STAGG, J. M., Solar radiation at Kew Observatory (Meteorological Office, London, 1950, publication, 530), (Geophysical Memories, 86).
- 14 Thams, C., Mittelwerte der Globalstrahlung in Zürich (Vierteljahrsschrift der Naturforschenden Gesellschaft Zürich, 1945, 60, 26).
- 15. NICOLET, M., et DOGNIAUX, R., Ensoleillement et orientation en Belgique. IV (Institut Royal Météorologique Belgique, 1951, Mémoires, 49).

TABLEAU I.

LÉOPOLDVILLE

Rayonnement global.

jour entier après midi

a m

matin

journalières.	
~27	
Sommes	

Année 1951

Latitude : 4º 19' S Longitude : 15º 20' E Altitude : 300 m.

Décembre	129 394 265	172 445 273	216 487 271	259 400 141	76 268 192	118 356 238
Octobre Novembre Décembre	214 534 320	205 490 285	55 163 108			149 392 243
Octobre	177 380 203	84 273 189	134 239 105		246 512 266	135 375 240
Septembre	69 140 7.1	49 125 76	193 448 255	260 464 204	85 311 226	250 509 259
Août	59 126 67	141 349 205	102 234 132	128 336 208	189 408 219	64 186 122
Juillet	94 219 125	142 352 210	135 330 195	51 206 155	95 176 81	195 -414 219
Juin	81 241 160	83 262 179	110 290 180	104 341 237		80 306 226
Mai	160 320 160	172 445 273	184 394 210	213 475 262	146 372 226	
Avril	321 623 302	276 495 219	122 310 188	151 313 162		205 457 252
Mars	123 392 269	118 234 116	263 568 305	28 201 173		250 528 278
Février	1.1 12.7 8.3	112 286 174	244 450 206	249 518 269	248 502 254	247 486 239
Janvier	7 178	123 387 264	74 197 123	152 303 151		122 306 184
Mois jours	1 m	er m a	3 m	4 m a m	5 m а m	6 m a m

Janvier		Février	Mars	Avril	Mai	Juin	Juillet	Août	Septembre Octobre		Novembre Décembre	Décembre
175 266 128 395 597	100	128	380	221	266	154	15 81	86.	143	198	149	107
261	<u> </u>	252		281	230	259	115	174	181	207	312	255
125 131 283	155	283	547	258	189	208	137	86	65	111	299	218
126 31.1	31-			256	168	244	207	118	119	98	300	179
65 182 254		15.		149	211	204	105	130	97	66	173	281
136 416	911		118	409	428	393	273	318	212	313	263	55.1
71 234 194		19.4		260	217	189	168	188	115	21.1	96	273
210 126 265	265			232	145	121	ts.	194	136	267	35	267
493 337 5		ıo	555	488	390	270	227	#1#	337	539	168	550
283 211 290		290		256	245	149	154	220	201	272	136	283
297 290 210		210		237	120	177	86	25	181	113	190	183
496 573 5		io	510	409	409	365	213	284	453	213	204	376
269 283 300		300		172	586	188	127	202	272	100	314	193
200 307 216		216		160	61	91	156	85	228	173	138	294
408 546 5		10	533	394	134	328	275	273	490	391	299	605
208 239 317		317		234	73	237	119	188	562	218	161	311
196 292 189		189		219	157	153	61	144	217	188	259	57
400 459 2		21	222	519	375	379	262	371	101	13.1	491	212
204 167 33		33		300	218	526	201	227	277	2-16	232	155
165 155 170		170		285	158	213	109	134	125	126	218	24
443 365 4			173	578	125	67	276	358	332	596	472	117
278 210 303		303		293	267	216	167	224	207	1.40	254	93
157 268 182		182		111	96	55	150	112	98	208	115	194
338 546	246		416	129	313	125	348	260	194	60+	392	456
181 278 234		234		18	223	20	198	148	108	201	277	262
	Ī											

2595 5979 3384	173 399 226	145 270 125	88 200 200	177 388 211	239 498 259	164 400 236	74 259 185	273 535 262	274 533 259
2587 6047 3460	172 403 231	176 449 273	256 480 224	231 321 321	208 537 329	268 575 307	186 487 301	244 130	163 434 271
2466 2 5359 2893 3	164 357 193	161 381 220	191 496 305	35 63 98	252 548 296	208 5 <u>22</u> 314	70 266 196	203 443 240	161 447 286
2184 5017 2833	146 335 189	198 396 198	170 411 241	181 442 261	145 227 82	125 392 267	257 318 61	91 190 99	190 359 169
1739 4381 2642	116 292 176	97 255 158	215 442 227	135 320 185	166 405 239	248 497 249	147 389 242	198 393 195	57 252 195
1664 4105 2441	111 274 163	70 142 72	235 467 232	229 156 227	7.3 1.3.3	109 298 189	168 375 207	67 155 88	194 359 165
1979 1951 2972	132 330	189 -126 237	216 139	294	39 149 90	191 413	56 224 168	68 258 190	64 210 146
2497 5808 3311	387	83 318	115 217 102	66 122	351	136 366 230	180 364	262 530 268	229 514 285
3104 6541 3437	207	168 461	208 449 241	255 546 941	519	20.4 572 268	278 496 218	190 324	280 534 254
2896 6559 3663	193	175	148 323 175.	290 596	221 535 314	276 584 308	178 461 283	205 443 238	212 514 302
3161 6395 2234	211	201 525 324	59 84	184 438	212 490 978	191 472	213 482 269	95 212	295 593 298
2103 5000 9807	140	123 253 130	71 150	164	180 367	284 567	288 578 290	131 363 232	189 436 247
Som. m de		16 m 16 m	1 2 E			20 m	21 m a m		

Décembre	91	5 E	72	238	155	217	171	130	259	164	300	136	15	195	74	255	508	253	245	472	227	142	372	230	
Novembre Décembre	303	63.1	331	253	482	229	204	485	281	261	584	323	154	378	224	131	368	237	187	285	86				
Octobre	135	202	27.	315	643	328	94	171	17	259	545	286	226	292	99	155	342	187	248	553	305	135	183	48	
Septembre Octobre	180	317	137	174	422	248	195	108	213	177	434	257	146	368	222	204	409	205	232	499	267				
Août	234	160	226	161	385	224	149	324.	175	104	263	159	203	390	196	102	320	218	245	184	239	105	355	250	
Juillet	101	307	206	165	305	140	200	410	210	214	431	217	192	415	223	37	149	112	194	380	195	19.1	392	198	
Juin	E	213	140	97	267	170	164	349	185	201	407	206	199	417	218	84	292	208	£	75	8				
Mai	262	523	261	166	127	261	57	135	8/	182	344	162	189	441	252	132	248	116	155	377	222	171	319	148	
Avril	247	521	274	20-1	485	278	270	543	273	197	438	241	245	544	299	263	546	283	237	505	268				
Mars	210	517	307	80	256	176	281	553	272	576	575	508	86	275	177	167	401	234	214	459	245	188	403	215	
Février	295	571	276	181	365	184	133	271	138	304	611	307	299	604	305										
Janvier	151	396	245	179	370	191	176	362	186	175	760	2 2	169	233	1-9	256	531	275	239	488	2.19	26	319	222	
Mois jours	24 m		a m	.25 m		u u			a m	27 m		a m	28 m		a m	29 m		a m	30 m		a m	31 m		a III	

6048	378	12027	388
2840 3208	178	5435 1 6592	175 213
6974	464	3021	434
3095 1879	206	5314 11496 13021 5682 7339	189
6137	384	1496	371
2848	178	5314 1 6182	171
5592	372		354
2665	177	1849	162
5943	371	0324	333 162 3
566 377	160	1305 5019	300 194
5183	324	8826	300
2 2442 4210 3 2741	153	4106	305 167
4210	281	19161	305
86 83	112	3661	368 183
2549 16 3047 23	350	140	368
2549 3047	159	5046 1 6358	163 205
738	492	3921	464
3462 7364 3918	231	566	219
7364	460	3923	449
218	201 259	6114	197
571	440	2113	433
2662 3056	205 235	5823	208
5837	365	10837	350
2759	172	4862 1 5975	157
Som. m de 16à31 a m	Moy. m de 16à31 a m	Som. m de 1 à 31 a m	Moy. m de 1 à 31 a m

	_	
1	A T	

LÉOPOLDVILLE	s Année 1952.	Longitude Altitude	15°20' E 300 m. 15°15' E 475 m.	Septembre Octobre Novembre Décembre	109 239 236 99	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	222 289 107 251	363 455 558 264 474	233 269 157 223	154 48 38	189 451 170	136 297 122 112	83 308 173 274	180 611 343	97 303 170 311	17 255 230	411 164 562	274 147 307 193	249 188 227 280	524	
	ıalière	Loi	15	Août	54	80	198		165	54		162	208		212	165		506	1.7		
	2 journ			Juillet	59	195 136	167	372	205	5.5	192	138	132	305	170	09	202	142	83	250	101
	Sommes 1/2 journalières	Latitude	4º19′S 4º22′S	Juin	73.	252 179	139	352	213	7.7	196	119	46	182	136	97	310	213	128	347	0.0
I bis.	So	Lati	401 402	Mai	106	311	160	416	256	231	413	182	149	373	224	40	178	138	132	370	
TABLEAU Ibis.			: :	Avril	251	557 306	298	470	172	292	580	288	103	296	193	297	604	307	291	535	
TA			t : :ptembi	Mars	245	519 274	301	286	285	248	345	97	277	594	317	272	577	305	195	388	.00
	lobal:		à aoû r de se	Février	72	225 153	248	527	279	175	243	89	195	485	290	281	568	287	175	427	0
	Rayonnement global:)	Janvier à août : A partir de septembre :	Janvier	269	511	157	347	190	142	294	152	172	426	254	137	359	222	209	1 9 1	1
	ayonn	,	7	Mois	Ξ.	e H		•	a m	f		a m	a		am	H		a m	ш		
	R			jours	-		•	1		m	ŕ		4			ıc			9		

241	388	1.17		91:1-		133					302			181						229		333	143	181	458	247	190	419	229
219	867	65		545	295			287						277									156		155	- 1		576	321
174	450	216	118	555		258	535	277			2.2			199			196				98			183	451		67	186	119
	206		60	139	62	121	403	232	271	540	569	125		189			236	1		276		267			482	273	114	353	239
98	186		141	360		216	438	222	102	٠.	203		180				198					155	93.		124		148	341	193
141	279	138	162	297		137		191					303	178	17		176				184		213		396		135	355	
99	193	127	170	- 087		125		220			7-1	1	_	8			123		71.5	162	2.6		175		٠.	197	1	331	
141	378	237	8	3539	_	181	1	261	10.2	667		1	362	569	163	445		1	532	271	238		569	17.1	423	546	103	300	197
222	533	311	266	5-13	27.7	1		287			350		-,	262	39		235	i			159	<u> </u>	283	98		251			284
189	492	303	17	10-1		216	101				237			277	147			247	-7	245	289			168			271	571	
187	348	191	218	480		240	523		1		287			137	1	468		282	-	285	1		298	l l		221	1	417	249
135	371	236	200	227	•	202	121		1	183	139	282	531		131	394		123	323		137	310	173	95	122		68	205	116
E		в	2		a 111			a m		:	в			a m	1	ļ	a m		<u> </u>	a m			a m	15 m		a m	16 m		a m

Jours	Mois	Janvier	Février	Mars	Ayril	Mai	Juin	Juillet	Août	Septembre	Octobre	Novembre Décembre	Décembre
17	Ξ	172	227	315	268	166	118	1 3	101	231	246	62	164
	a m	353	532 305	584 269	427 159	377 211	300	226 183	299	513 282	506 260	166 87	403 239
18	a	191	85	189	262	102	78	55	166	114	201	208	150
	a m	398 207	316	251	560 298	280 178	241	122	362 196	151 37	412 211	512 304	425 275
19	Ε	236	205	230	274	157	167	212	85	135	192	279	183
`.	a m	213	233	275	171	265	215	220	136	161	391 199	574 295	363 180
50	Œ	218	186	204	182	86	20	45	121	252	127	209	171
		570	446	297	601	361	178	141	367	439	376	419	460
	u III	707	7007	25	777	703	108	95	246	187	540	210	583
21	H	231	266	147	237	201	76	131	197	50	189	142	254
	a m	252	290	296	286	418 247	ee1 79	250	452 255	146 126	440 251	437	546 292
77.	III.	262	233	324	216	166	29	74	103	141	110	162	187
		173	545	623	440	411	133	187	219	449	277	327	440
	a m	211	312	299	224	245	99	113	116	308	167	165	253
23	E	261	241	295	298	81	73	80	9/	111	173	255	121
		512	475	605	570	326	192	152	149	317	360	498	287
	a m	251	234	307	272	245	119	7.5	73	506	187	243	166
۲. ۲.	Ξ	234	272	16-1	211	165	107	104	189	107	195	288	210
		511	577	430	329	413	295	234	428	336	413	617	314
۳	Ξ	277	305	266	118	248	188	130	239	229	218	329	10.1
								-					

430	504	333	311	5.48	180	414
155 275	228 276		166 145	288	78	166 248
249 468 219	145 336 191	198 508 310			171 427 256	
155 421 266	239 516 277	262 527 265	69 232 163	105 338 233	314 314 187	187 378 191
131 257 126	1	187 389 202	7.3 140 67	162 298 136	155 349 194	
119 288 169	207 458 251	214 403 189		234 427 193	44 137 93	93 230 137
152 360 208	96 273 177	7.3	119 265 146	55 108 53	86 182 96	197 396 199
75 269 194	162	158 360 202	75 236 161	59 171 112	46 127 81	
96 335 239	225 473 248		185 420 235		38 115 77	131 364 233
82 342 260	150 370 220	265 478 213	274 548 264		16 196 180	
253 508 255		299 527 228	288 574 286	1	156 284 128	199 431 232
194 326 132	212 527 315	131 225 194	154 281 127	236 365 129		
92 327 235	123 319 196	280 515 235	252 463 211	130 345 215	151 368 217	99 201 102
25 m m		8	28 m	75	30 m	31 m

TABLEAU 2.

LÉOPOLDVILLE: année 1951.

Rayonnement global.

Moyennes journalières par décade

	0)	
	ournée entière	idi
matin		après-mid
H		a m

Mois Décade	Mois Janvier Décade	Février	Mars	Avril	Mai	Juin	Juin Juillet		Août Septembre Octobre Novembre Décembre	Octobre	Novembre	Décembre
I m	116	191 205	193 248	209 451 241		129 333 204	110 273 163	118 283 165	300	166 365 199	167 389 222	184 421 237
II a m	162 347 186	209 430 221	208 466 259	206 158 241	115	132 312 180	<u> </u>	142 347 205	166 38: 217	166 3 376 210	206 475 269	156 361 205
m III a m	162	222	192 442 250	241 493 252		5	157 335 178	7 335 366 310 311 311	85 87 37:	182 372 190	196 438 242	184 382 198

LÉOPOLDVILLE Année 1952.

TABLEAU 2 bis.

Rayonnement global. Moyennes

journée entière après-midi

m a

matin

Moyennes journalières par décade.

Mois Décade Janvier Février	Janvier	Février	Mars	Avril	Mai	Juin	Juin Juillet	Août	* Septembre	* Octobre	Septembre Octobre Novembre Décembre	Décemb	* 91
ш	156		211	240	137		108	130	159	185	192	196	131
l a m	360	120 232	4-10 229	11e 172	21.1	177	154	176	198	238	217		
m		179	227	195	156	96	122	132	180		205	191	
Ξ	366	429					295	295			629		130
a m	199	250	226	240	245	164	172	163	506		224		
5	192	215	236	199	7	81	106	1.18	128		202	183	
- 111	411	445				217	232	326			629		2 <u>0</u>
e m	218	226	261	231	211	136	126	821	180		257	ŀ	
8	172	196	225	211	145	95	112	137	155		200	190	
1-11-111	380					251	262	300	350		132		13
a m	208	237	239	217	223	159.	150	172	195		233		

* Binza, près de Léopoldville 475m NN

TABLEAU 2 ter.

Maximum et minimum de rayonnement global enregistrés par jour pour chaque décade. Maximum et minimum absolus pour chaque mois.

LÉOPOLDVILLE, année 1951.

Déc.	554	597		605	177		535	125	605	1117
Nov.	599	163		575	299		634	244	634	163
Oct.	539	197		248	8 6		6.13	171	643	86
Sept.	464	125		494	194		499	190	499	125
Acût	414	126		497	255		484	252	497	126
Juil.	414	176		467	133		431	149	467	133
Juin	452	341	429		125		417	73	452	75
Mai	496	320		425	122		530	135	530	122
Avr.	623	310		578	129		5.16	324	623	129
Mars	597	201		296	222		575.	256	597	201
Fév.	527	127		13	∞		611	212	611	**
Jan.	193	8,		567	150		578	233	578	8,
	I Max.	Min.	11	Max.	Min.	111	Max.	Min.	Max. /abs	Min. /abs.

TABLEAU 3.

Moyennes journalières par décades et par mois de la température

a) pendant les heures de jour (6 h à 18 h).

b) pendant la journée entière (0 h à 24 h).

LÉOPOLDVILLE: année 1951.

		Jan.	Fév.	Mars	Avr.	Mai	Juin	Juil.	Août	Sept.	Oct.	Nov.	Déc.
-	a)	25,5	25,3	27,3	27,0	27,2	25,4	23,7	23,8	25,8	28,5	26,2	26,5
i	p)	24,2	23,7	25,8	25,4	25,6	23,9	22,1	22,1	24,0	26,3	24,9	23,9
Ξ	a)	26,1	26,7	27,7	56,9	26,2	23,8	23,8	23,8	27,3	27,5	27.2	25.8
:	p)	24,7	25,2	25,9	25,5	25,0	22,3	22,2	0,22	25,5	25,9	25,3	23,4
П	a)	26,4	27,2	26,5	28,5	26,5	23,9	23,2	25,3	27,7	26,7	27,1	26,3
•	p)	24,7	25,5	25,0	26,4	24,9	22,2	21,8	23,4	25,3	25,2	25,6	23,3
Mois	а)	26,0	26,3	27,0	27,4	26,7	24,4	23,6	24,4	26,8	27,5	23,5	26.2
-	(q	24,6	24,8	25,6	25,7	25,2	22,8	22,0	22,8	25,0	25,8	25,2	23,4

TABLEAU 4.

Maximum et minimum de température enregistrés pendant chaque décade.

Maximum et minimum absolus pour chaque mois.

LÉOPOLDVILLE: année 1951.

Déc.	33,0	32,4	33,1	33,1
	19,6	20,2	20,8	19,6
Nov.	31,8	32,1	33,0	33,0
	20,8	1,13	21,8	20,8
Oct.	35,3 20,0	34,0 20,8	34,0	35,3
Sept.	32,3	33,5.	33,3	33,5
	16,5	16,5	19,2	16,5
Août	30,7	33,2 14,3	34,2 16,4	34,2
Juil.	29,7	31,0	29,7	31,0
	15,7	16,5	13,6	13,6
Juin.	30,4 18,6	30,6	31,0	31,0
Mai	33,0	31,5	32,8	33,0
	20,8	20,6	19,5	19,5
Avr.	33,5 20,5	34,4	33,7	34,4 20,5
Mars	33,8	34,4	32,7	34,4
	20,1	21,1	20,2	20,1
Fév.	32,0	33,0	35,1	35,1
	18,9	19,3	20,3	18,9
Jan.	31,0	32,0 18,4	32,4	32, 1 18,4
	Max.	Max.	Max.	Max.
	Min.	Min.	Min.	Min.
	1	11	111	Mois

3450 0,44

0,39

91,0

91.0

0,45

0,43

0.56

0,47

0,48 3212

Ξ

3565 0,37

TABLEAU 5.

Total des heures d'insolation par décades (en 1/10 d'heures).

LÉOPOLDVILLE: année 1951. Moyennes journalières par décade.

	Jamy.	Févr.	Mars	Avril	Mai	Juin	Juin Juillet	Août	Sept.	Oct.	Nov.	Déc.
I Mov.	27.8	450	593	535	553 55,3	489	201	386	39.6	409 40,9	400	553
II	4+8	553	522	602	315	518	83	53.1	155	329	556	380
Mov.	8,1	61,1	52,2	60,2	31,5	8,10	e e	1,13	:15,5	35,6	9,66	39,9
III Moy.	591	552 61,3	518 49,8	21.8 21.8	616 56,0	508 50,8	726 66,0	690	-185 	-126 38,7	560	589 53,5
Total	1317	1555	1663	1885	1-18-1	1.179	1566	1607	1328	1164	1516	1541
Moy.	6,54	55,5	93,6	62,8	47,9	6,0	50,5	51,8	41,3	37,5	50,5	16,7
				Γ_{ABI}	TABLEAU 5 bis.	5 bis.						
I) Durée d'insolation S par mois en 1/10 d'heures.	Durée d'insolation S par mois en 1/10 d'h Durée d'insolation So possible par mois	lation Jation	S par	<i>mois e</i> ossible	n 1./1	0 d'hei mois	ures.					
III) Rapport S/So.	ort S/S	30.	<u>}</u>									
	Janv.	Fév.	Mars	Avr.	Mai	Juin	Juil.	Août	Sept.	Oet.	Nov.	Déc.
I S	1317	1555	1663	1885	1-18-1	1.179	1566	1607	1328	1164	1516	1541
II So	3565	3212	3525	3369	34-11	3309	3419	3.163	3390	3534	3450	3574

TABLEAU 6.

Relations entre insolation et nébulosité basées sur les moyennes mensuelles.

es).
ıtièm
cer
rimés en ce
més
expri
Z
et
S_0
(\mathbf{S})
Z
110
0
S/S
υ
e Hanr
le I
e c
nu
orr
la f
de 1
q
tion
ffice
/éri

	Janv.	Janv. Fév.		Mars Avr.	Mai	Juin	Juil.	Août		Oct.	Sept. Oct. Nov.	Déc.
8 /S ₀ %	37	- *	47	26	43	=	16	9†	39	33	7	43
N en %	ž	17	98	8/ 1/	80	63	8	99	69	8	38	77
N' en %	11	62	6.1	86	99	62	59	.ee	28	7.	61	99
$N + S/S_o$	121	125	133	134	123	107	109	105	108	111	126	115
$N' + S/S_o$	108	110	11:11	114	109	106	105	101	56	107	108	102

N'= nébulosité sans cirrus en $^{o\prime}_{o}$

Moyenne de N' + S/S_0 : 107

 α_3 : Coeff. d'Angström calculé à partir de Q et Qo. α_2 : Coeff. d'Anström. calculé à partir de $\widetilde{Q'}o.$

Qo: Rayonnement moyen pour les jours où la durée d'insolation

est supérieure à 9/10.

Q'o: Rayonnement journalier max. enregistré par mois. Q: Rayonnement journalier moyen par jours sans insolation.

TABLEAU 7.

	5	1						in an article	t a An	et t insolation possible (en %). — Coefficient a Angstrom.	· 2	ì	
	Janvier Fevrier Mars	revrier		Avril Mai		Juin	Juillet	Juin Juillet Aout Sept. Oct.	Sept.	Oct.	Nov. Dec.	Dec.	Année
s Õ	350	433	449	46.1	368	305	300	333	354	371	434	388	379
° õ	572	603	568	556	527	418	441	479	499	643	609	570	540
Q′ o	578	611	597	623	530	459	467	497	499	643	634	605	566
õ	136	084	1	1	130	075	155	126	184	860	163	125	132
α 1	0,38	0,46	09'0	0,63	0,47	0,51	0,41	0,44	0,52	0,37	0,49	0,44	0,47
α 2	0,37	0,44	0,53	0,42	0,46	0,39	0,34	0,39	0,52	0,37	0,44	0,37	0,41
8	0,24	0,14			0,25	0,18	0,35	0.26	0.37	0.15	0.27	0.55	0.24

TABLEAU 7 bis.

Comparaison des coefficients d'Angström à différentes places.

	Léopoldville Davos	Davos	Paris	Zürich	Washington	Helsingfors	Bruxelles
ŭ	0,47	0,52	1	0,31	0,30	-	-
α_{2}	0,41	I		l		1	0,31
g g	0,24	0,40	0,27	0,26	0,22	0,23	!
Haurwitz [4] Blue Hill. Lunelund [9] Helsingfors	Blue Hill. Felsingfors	Mau Proh Thai	Maurain [7] Paris St. Maur Prohaska [10] Davos 1600 m NN Тнамs [14] Zürich.	Maur 600 m NN	KIMBALL [8] Washington. NICOLET et DOGNIAUX [12] Bruxelles — Uccle.	Vashington. ogniavx [12] - Uccle.	

TABLEAU 8.

Fréquence des différentes sommes journalières du rayonnement global

an cours de l'année 1951 à Léopoldville.

Rayonnement cal./cm²	100	100 à 200	200 à 300	300 à 400	400 à 500	500 à 600	600 à 700
Janvier	1	7	.#	12	1~	က	0
Février	1	,—,	7	es	x	6	श
Mars	0	0	10	m	6	1.4	0
Avril	0	-	Э	ব	11	13	-
Mai	0	က	ĊΊ	#	5:	es	0
Juin	1	<u>ج</u> ا	21	æ	1~	0	0
Juillet	0	9	6	10	•	0	0
Août	0	ભ	Ģ	133	1~	0	0
Septembre	0	10	61	10	11		0
Octobre	1	က	1~	9	1~	9	-
Novembre	O	61	=	ic	Ξ	1~	1
Décembre	0	c1	9	×	9	10	1

LÉOPOLDVILLE: année 1951.

aleurs horaires du rayonnement global en meal/em²min	
en	
global en	
rayonnement	
dn	
horaires	
Valeurs	

	6 h.	7 b.	ж h	9 h.	10 h.	11 h.	12 h.	: .	13 h. 14 h.	15 h.	16 h.	17 h.	18 h.
Janvier	010	127	329	121	998	7-10	838	668	773	563	353	156	013
Février	011	140	87	659	8.10	666	1075	1116	884	692	366	172	910
Mars	900	165	80I-	521	682	933	1111	6601	1075	8:12	504	167	012
Avril	900	156	395	613	8-15	1108	11.41	1117	1049	791	17)	157	011
Mai	00	980	530	151	089	830	905	626	842	662	393	149	800
Juin	60	020	210	3.17	537	633	67.5	807	792	631	359	11 21	1.00
Juillet	003	190	215	351	929	720	256	296	675	548	310	103	00.1
Août	005	980	222	382	537	752	835	891	843	647	385	127	800
Septembre	900	660	294	162	909	928	666	915	824	603	367	103	600
Octobre	900	120	294	476	726	903	875	206	83.1	674	451	166	016
Novembre	011	Ŧ	319	546	292	886	1082	11.18	1001	682	511	213	020
Décembre	011	123	298	512	708	863	266	1015	880	662	407	152	014
Janvier*	800	130	298	186	889	884	942	266	876	169	386	1-18	013
Movenne**	900	115	301	<u>8</u> :	685	874	646	981	880	685	601	1-18	011
Sens Const.	900	116	304	81	929	854	915	954	998	685	4115	151	011
H/G	100	84	74	11	65	58	52	47	44	45	52	89	100
* 1952 **févr	**février 1951 à janvier 1952	anvier 19	25										

TABLEAU 9 bis.

Valeurs horaires du rayonnement global en m ${\it cal}$ $|{\it cm}^2$ min.

1952.
année
ÉOPOLDVILLE :
Li

	6 h	7.h	8 Ъ	9. h	10 h	11 h	12 h	13 h	14 h	15 h	16 h	17 h	18 h
Janvier	800	130	298	486	889	884	942	266	876	169	380	148	013
Février	800	147	354	559	772	956	1108	1100	944	740	439	185	011
Mars	000	447	357	637	953	1102	1180	1211	985	737	455	151	600
Avril	200	130	3.12	260	985	1112	1166	1194	1075	731	482	191	011
Mai	004	060	248	387	567	751	971	1081	974	299	405	141	200
Juin	900	052	144	246	360	545	553	714	629	515	351	111	010
Juillet	904	690	198	326	422	546	671	702	636	161	296	09 4	900
Août	002	075	238	362	553	645	825	811	712	540	293	100	200
Septembre	900	093	249	488	648	734	825	851	808	616	405	169	600
Octobre	800	105	287	494	739	914	1034	959	912	759.	486	187	0.15
Novembre	(010)	150	339	580	825	896	1002	1027	996	713	478	196	(018)
Décembre	016	100	333	492	761	951	966	10.19	888	695	421	166	016
	087	1288	3387	5617	8273	10108	11270	11696	10456	7895	1900	1839	0132
Moyenne	200	107	585	468	689	842	940	975	87.1	657	408	153	0111

TABLEAU 10.

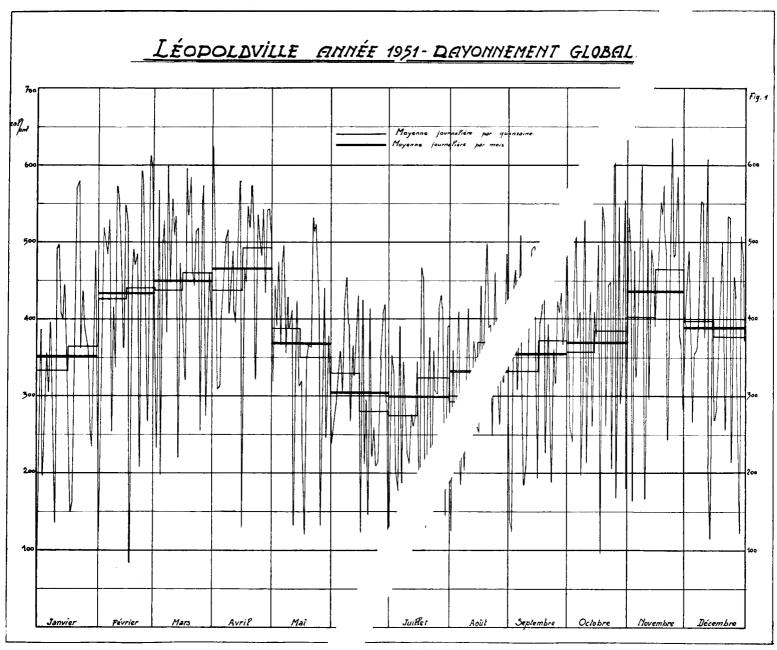
Valeurs horaires du rayonnement du ciel en mcal/cm² min.

LÉOPOLDVILLE: année 1951.

	6 ћ.	7 h.	8 h.	9 h.	10 h.		11 h. 12 h.	13. h.	14 h. 15 h.	15 h.	16 h.	17 h	18 1
	_ -	_ -											
Février	011	112	275	361	103	438	4.14	386	388	337	222	123	016
Mars	900	135	599	376	510	267	165	459	373	311	239	115	012
Avril	900	121	236	388	182	523	493	430	323	256	206	104	011
Mai	604	073	179	348	160	200	511	496	366	292	202	111	800
Juin	001	190	171	273	384	436	413	408	348	294	183	060	004
Juillet	000	058	158	256	388	427	435	448	384	304	175	078	004
Acût	600	073	176	281	378	486	517	489	438	308	201	093	008
Septembre	900	075	232	316	138	533	187	495	410	334	215	077	600
Octobre	200	109	242	388	195	009	597	517	372	306	228	102	016
Novembre	011	31	211	÷	530	571	675	463	359	271	213	119	050
Décembre	011	101	226	357	871	202	480	483	424	293	215	104	014
Janvier*	800	120	233	337	164	490	516	208	475	408	246	101	013
Moyenne**	900	260	222	311	446	206	967	465	388	306	212	101	Ε

* 1952 - **calculé de février 1951 à janvier 1952.

Tableau 10 bis.


Valeurs horaires du rayonnement du ciel en mcal/cm² min.

LÉOPOLDVILLE: année 1952.

h. 18 h.	_		3 000	4 011	_				000			2 016	_
. 17 h.				114									_
16 h.	236	211	251	216	209	189	189	199	259	248	193	216	218
15 h.	408	302	300	298	301	586	293	300	317	343	307	321	314
14 h.	475	395	376	370	358	381	389	406	459	457	393	408	407
13. ћ.	208	536	446	413	421	474	437	433	511	515	488	483	472
12 h.	516	564	527	432	472	429	126	465	564	557	533	535	505
11 h.	510	571	976	387	456	412	388	444	552	536	535	570	495
10 h.	482	536	501	426	383	314	319	366	403	478	522	494	435
.9 h.	346	401	413	342	294	222	259	257	304	329	417	366	329
8 h.	235	267	254	219	194	121	164	185	166	222	291	256	214
7 h.	112	126	125	106	620	0.4.4	062	890	062	091	131	125	094
6 ћ.	800	800	005	200	†00 †	900	004	005	900	800	(010)	016	000

Janvier Février Mars Avril Mai Juillet Août, Septembre

Novembre Décembre

	٠					

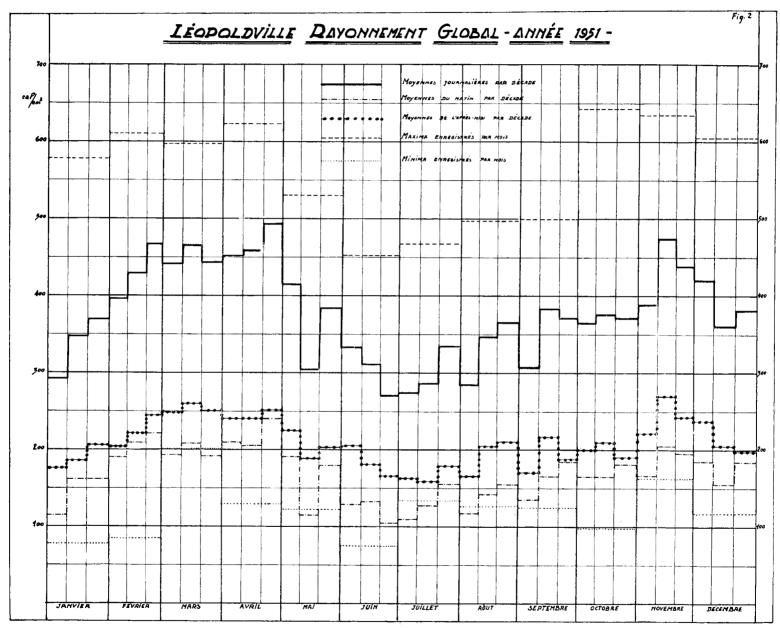
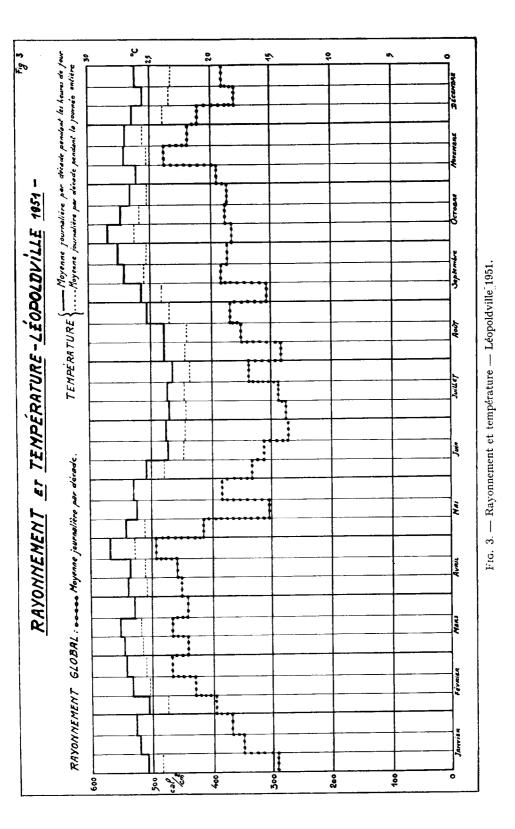



Fig. 2. — Le rayonnement global à Léopoldville en 1951.

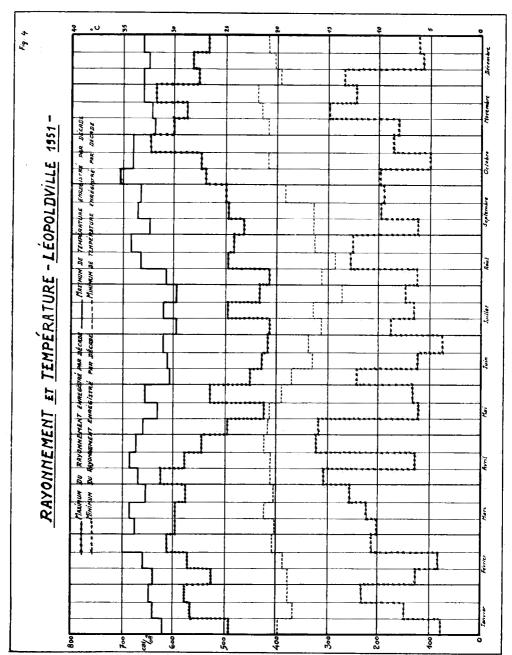


Fig. 4.—"Rayonnement et température — Léopoldville 1951.

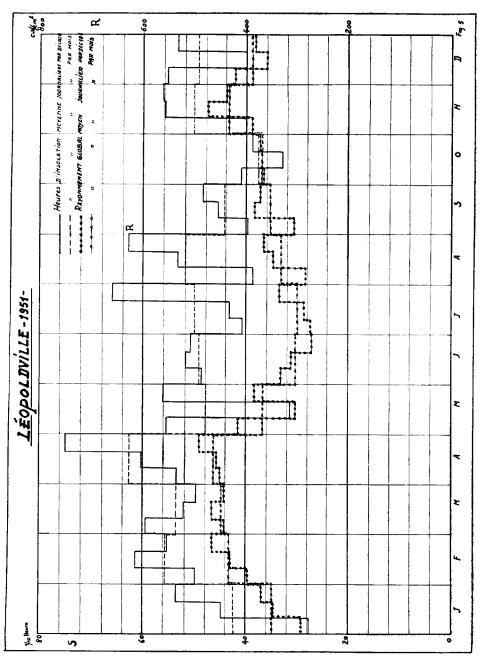


Fig. 5. — Léopoldville — 1951.

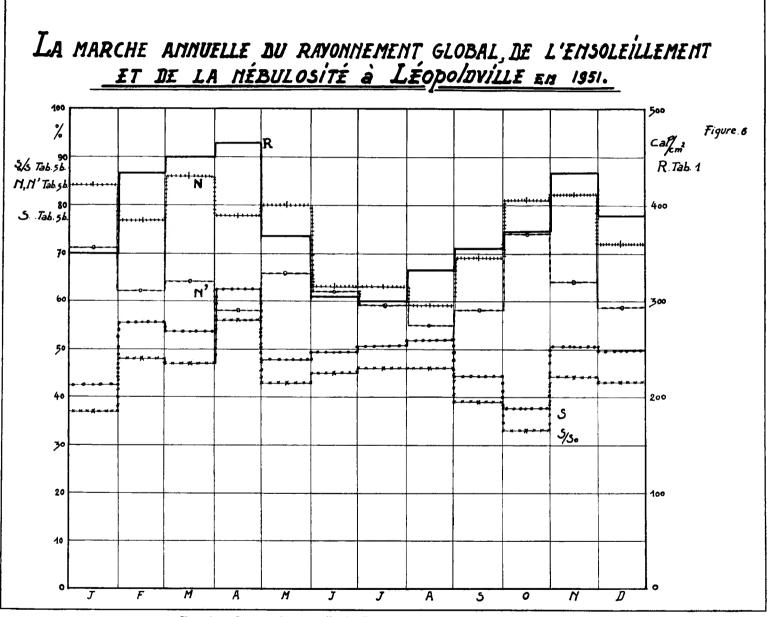


Fig. 6. — La marche annuelle du Rayonnement global de l'Insolation et de la Nébulosité à Léopoldville en 1951.

- Rayonnement: moyenne journalière par mois en cal/cm²,
- ··· Durée d'insolation moyenne journalière en 1/10 heures,
- ×××× Durée d'insolation en % de la valeur possible,
- 11111 Nébulosité totale en %.
- -o- Nébulosité sans cirrus en %.

			,

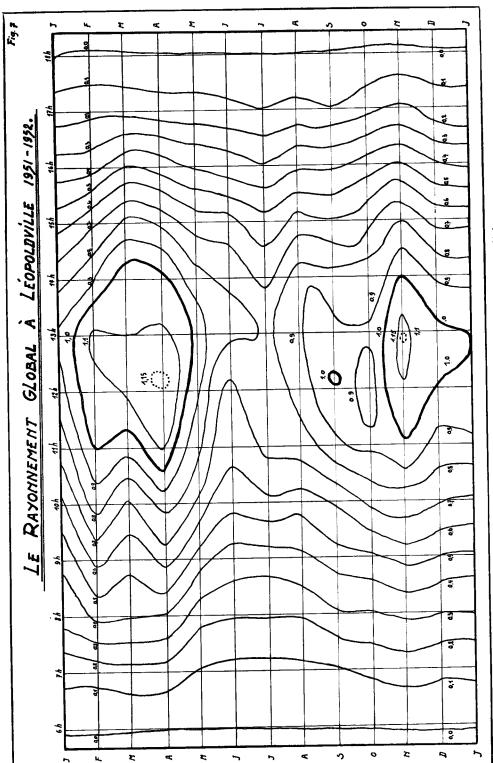


Fig. 7. — Le rayonnement global à Léopoldville en 1951, isoplèthes.

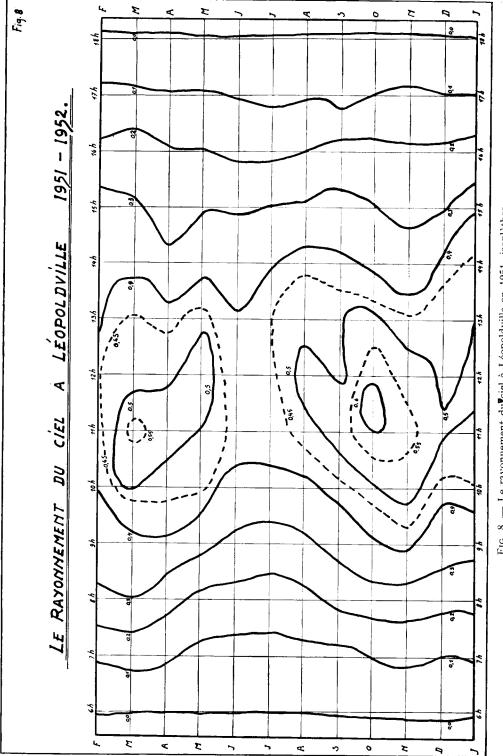


Fig. 8.— Le rayonnement du ciel à Léopoldville en 1951, isoplèthes.

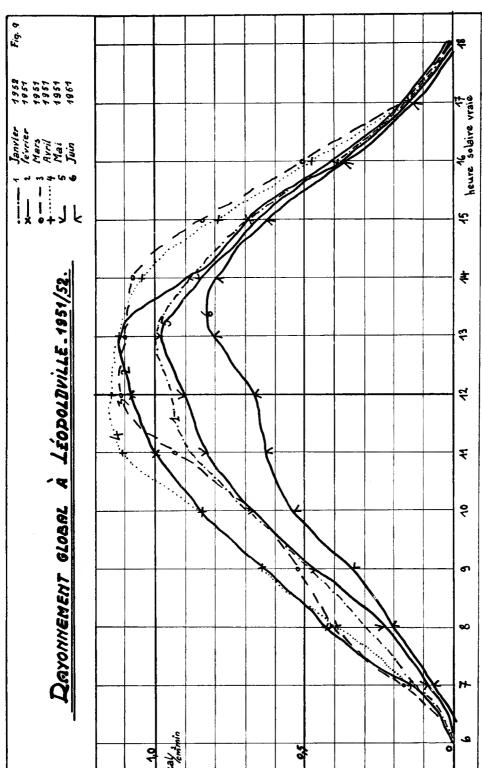


Fig. 9. — Le rayonnement global à Léopoldville — 1951/52.

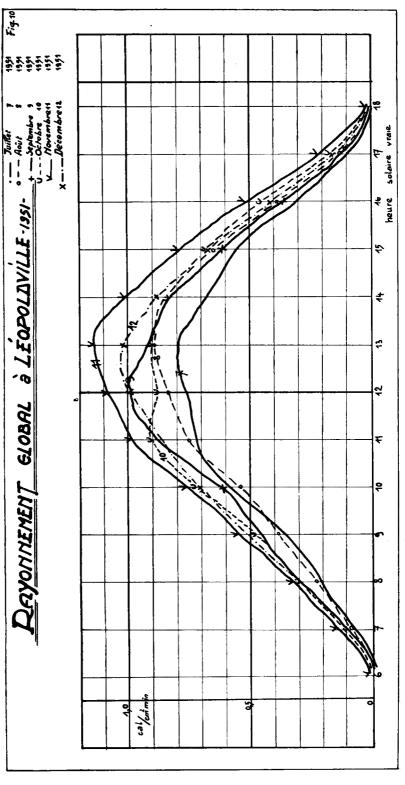
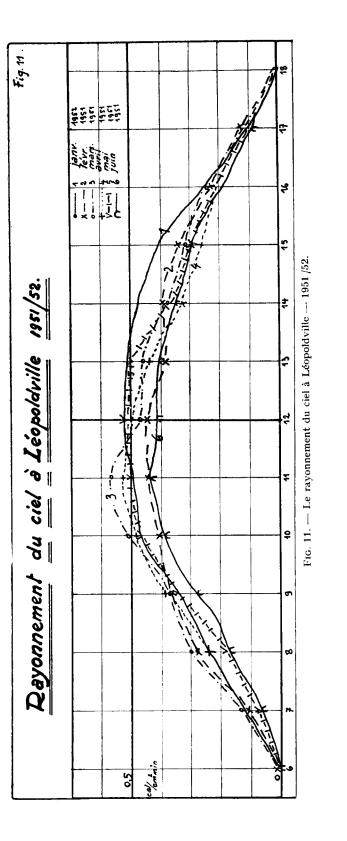
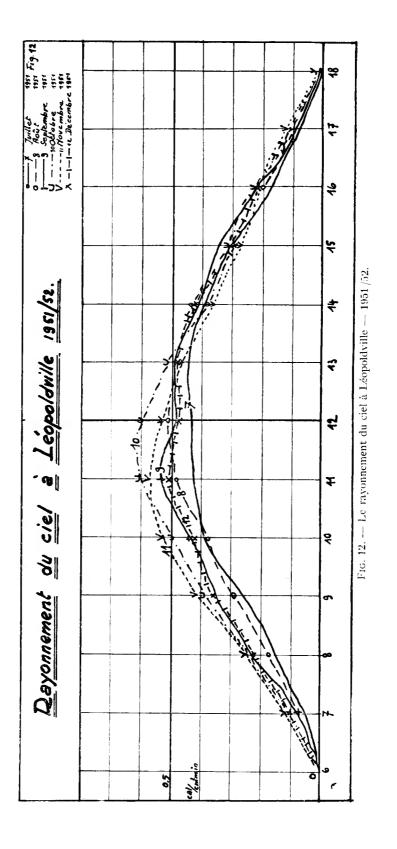




Fig. 10. — Le rayonnement global à Léopoldville — 1951.

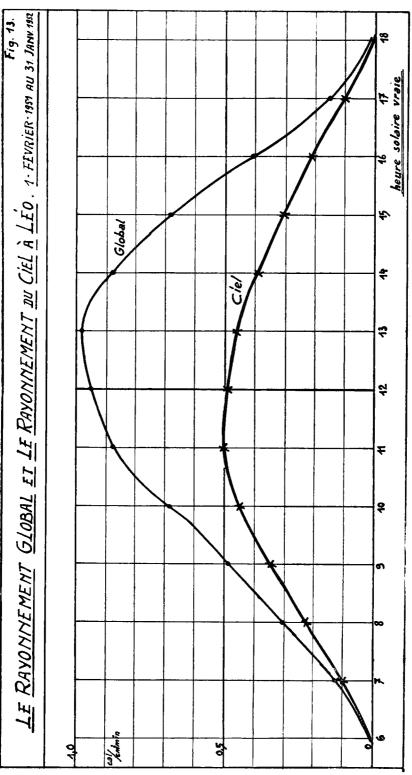


Fig. 13. — Le rayonnement global et le rayonnement du ciel à Léopoldville en 1951. Variation journalière moyenne par an.

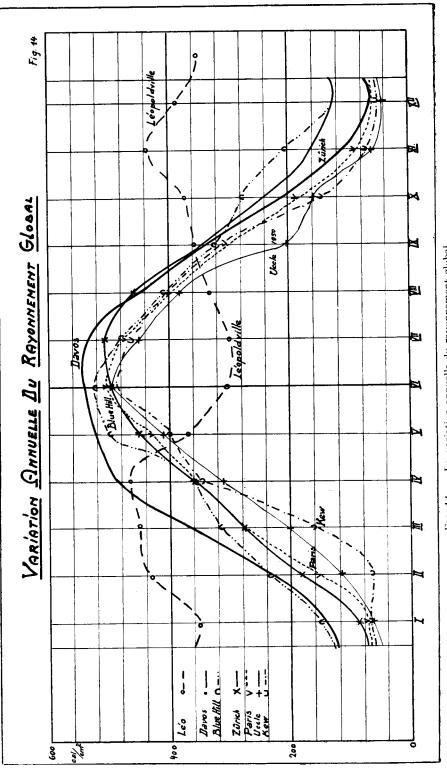
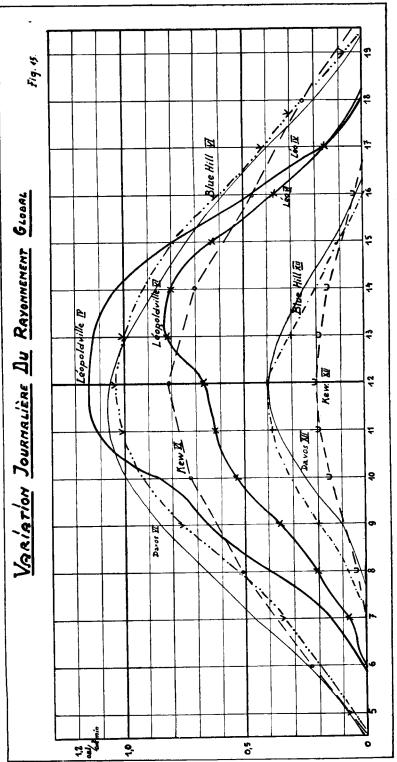
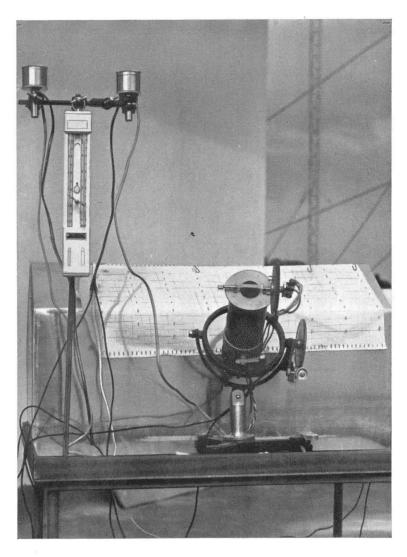


Fig. 14. — La variation annuelle du rayonnement global,

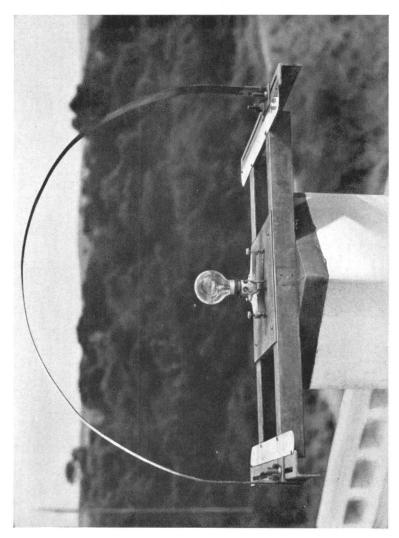
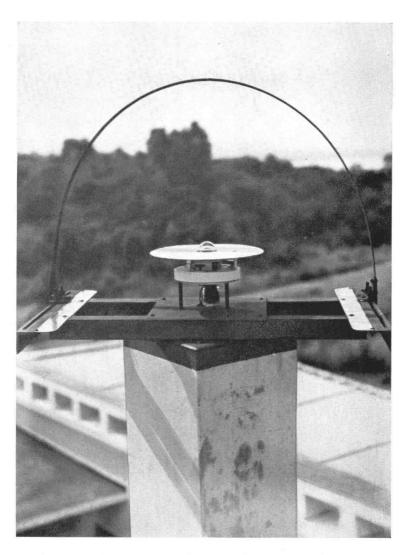
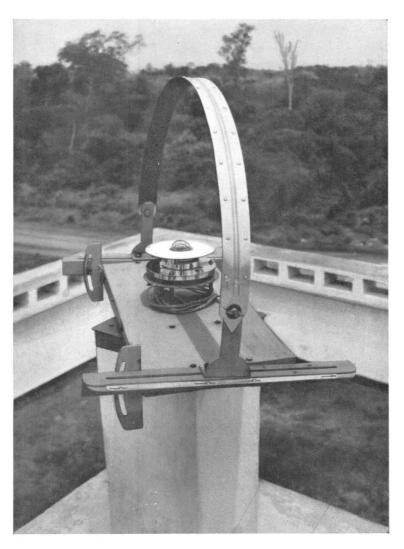

Fig. 15. — La variation journalière du rayonnement global à quelques endroits.

TABLE DES MATIÈRES


AVANT-PROPOS	1
Présentation	3
Appareils utilisés et méthodes de dépouillement A. Rayonnement global G	5 5
B. Rayonnement du ciel H	8
D. Température moyenne	.9
E. La nébulosité	9
Le rayonnement global (sommes journalières)	10
Les valeurs horaires du rayonnement	14
Conclusion	17
Bibliographie	18
Tableaux	19
Figures	41
Table des matières	54


Рното 1. — Pyrhéliomètre Angström, modèle de l'Astrophysical Observatory de la Smithsonian Institution. Instrument absolu pour étalonnages.

Pното 2. — Bande cache-soleil sur pyranomètre Eppley. Récepteur à l'ombre, ampoule en grande partie illuminée.

Рното 3. — Bande cache-soleil pour station proche de l'équateur sur pyranomètre Moll. Récepteur et coupole intérieure à l'ombre, coupole extérieure en petite partie illuminée.

 $\mbox{\sc Photo}$ 4. — Bande cache-soleil pour station en basse latitude sur pyranomètre Moll. Les deux coupoles complètement à l'ombre.

