Académie royale des Sciences coloniales

CLASSE DES SCIENCES NATURELLES ET MÉDICALES

> Mémoires in-8°. Nouvelle série. Tome VI, fasc. 6.

Koninklijke Academie voor Koloniale Wetenschappen

KLASSE DER NATUUR- EN GENEESKUNDIGE WETENSCHAPPEN

Verhandelingen in-8°. Nieuwe reeks. Boek VI, aflev. 6.

Étude de la radiation solaire à Lwiro en 1953

PAR

G. BONNET

Assistant Scientifique & L'I.R.S.A.C.

Rue de Livourne, 80A BRUXELLES Livornostraat, 80A BRUSSEL

1958

PRIX : PRIJS: F 150

Étude de la radiation solaire à Lwiro en 1953

PAR

G. BONNET

Assistant Scientifique & l'I.R.S.A.C.

Mémoire présenté à la séance du 27 avril 1957.

Rapporteurs: MM. L. VAN DEN BERGHE et E.-J. DEVROEY.

I. - INTRODUCTION

Depuis quelques années, l'intérêt porté à la radiation solaire va en croissant rapidement car elle intervient dans les domaines d'activité des biologistes, des médecins, des agronomes, des météorologues, des architectes, pour ne citer que ceux-là, sans oublier les ingénieurs qui recherchent à nouveau activement l'utilisation courante de cette source d'énergie peu constante, mais inépuisable. Aussi, en 1952, l'Institut pour la Recherche Scientifique en Afrique centrale (I.R.S.A.C.) créait en son centre de Lwiro un laboratoire pour l'étude du rayonnement solaire en même temps d'ailleurs qu'une station ionosphérique et une station de rayonnement radioélectrique solaire auxquelles devait être adjointe peu après une station de séismologie.

Si les travaux relatifs à la connaissance de la radiation solaire sont poursuivis en Europe depuis le début du siècle, il n'en est pas de même en Afrique, surtout en Afrique centrale. Un premier et grand effort a été fait en 1927 par H. SCAËTTA qui établit un réseau de stations sur la dorsale Congo-Nil. Puis d'autres mesures furent effectuées à partir de 1934 dans les régions centrale et ouest du Congo belge. Ces données initiales, bien qu'obtenues avec des lucimètres de Bellani et quelques héliographes du type Campbell, ont néanmoins permis à H. SCAËTTA[1] (¹), puis à E. BERNARD[2], de vastes mais

^(*) Les chiffres entre [] renvoient à la Bibliographie, p. 48.

premières considérations très générales sur le climat solaire de cette région de l'Afrique, ces deux auteurs reconnaissant toutefois que des mesures précises étaient indispensables pour étudier le sujet avec profit. Elles le sont d'autant plus que la plupart des utilisateurs exigent pour leurs travaux des données exactes. Si, pour certains domaines d'étude, il est nécessaire d'avoir des valeurs du rayonnement en de nombreux points avec une faible précision, il en est d'autres où cette dernière est primordiale. De plus, les appareils simples répandus sur toute une région doivent être étudiés et contrôlés à la station principale dont l'équipement, avec les appareils disponibles actuellement dans le commerce, permet d'avoir une très bonne précision.

Le laboratoire de radiation solaire de Lwiro dispose d'un appareillage de premier ordre. Pour le choix de ses instruments et en partie pour leur installation, il a bénéficié de la grande expérience de l'équipe du Dr M. NICOLET, chef du Service du Rayonnement de l'Institut Royal Météorologique de Belgique. Avant d'entreprendre des recherches particulières, notamment sur la transparence de l'atmosphère dont les fluctuations nettes mais d'origine bien imprécise caractérisent cette région de l'Afrique, il était recommandé à ce laboratoire de devenir une « station », dans le sens habituel de ce mot obtenant une analyse précise de la radiation solaire au niveau du sol et par suite des données immédiatement utilisables. Les délais de fourniture des instruments ont été tels que leur mise en place définitive a pratiquement demandé plus de deux ans, néanmoins les premières données ont été obtenues vers la fin de 1952. De plus, l'ampleur très rapidement croissante du premier complexe géophysique : ionosphère, bruits solaires, ravonnement, a empêché jusqu'en 1955 la réduction complète dans les délais normaux des diverses données enregistrées.

Le présent ouvrage a pour but de montrer l'activité du laboratoire depuis sa création et de donner une partie des résultats obtenus en 1952 et 1953. La technique d'observation et celle du dépouillement seront assez détaillées pour montrer la nécessité du soin à apporter à ce genre de mesures. Le premier effort de la station a porté sur l'amélioration de la précision que l'on admet généralement dans les stations dites principales pourvues d'un appareillage moderne. La précision obtenue à Lwiro, qui sera encore améliorée dans un proche avenir, est montrée par le contrôle demi-horaire, donc indépendante de la précision des trois appareils étalons utilisés, appareils classiques décrits plus loin.

Le laboratoire est situé sur la chaîne montagneuse de l'est du Congo belge, à une altitude de 1750 mètres. Ses coordonnées géographiques sont 2,02 S et 28,08 E. Cette situation est un peu particulière en ce qu'elle ne répond pas rigoureusement aux conditions de site habituellement admises pour une station d'actinométrie. En effet, l'horizon n'est pas dégagé à l'ouest où la chaîne des monts Kahuzi s'élève parfois jusqu'à 7 degrés (fig. 1). Il n'en demeure pas moins que l'emplacement de la station étant passablement représentatif d'une vaste région, il n'y a pas lieu de tenir compte d'une correction topographique, dont l'évaluation serait d'ailleurs théoriquement impossible. La partie du ciel cachée ne représente qu'une bien faible partie de l'hémisphère céleste, inférieure au centième, dont le rayonnement parvenant sur une surface horizontale peut être aisément négligé. Ouant au rayonnement du soleil ainsi supprimé, on peut aussi ne pas en tenir compte. En effet, presque durant toute l'année, le soleil disparaît le soir derrière une couche de nuages avant d'atteindre la montagne probablement par suite de la présence de l'immense Cuvette centrale à l'ouest de la chaîne. Le nombre de jours sur une année pour lesquels le soleil disparaît derrière la montagne est

de l'ordre de 10 à 20. Si une correction ne tenant pas compte des nuages possibles était apportée à ces jours-là, elle aurait une valeur maximum de l'ordre de 6 à 7 calories. Il est seulement tenu compte de cette correction topographique pour le calcul de la durée d'insolation possible.

FIG. 1. — Levé topographique de l'horizon de Lwiro.

II. – ACTIVITÉ GÉNÉRALE

La mise en route effective du laboratoire, bien que partielle, a pu être effectuée en octobre 1952 tant en rayonnement qu'en climatologie. Par la suite, au fur et à mesure de l'arrivée de l'appareillage, les mesures ont été poursuivies dans de meilleures conditions et d'autres études ont pu être entreprises. Actuellement, soit quatre années après la création du laboratoire, les mesures et observations qui y sont faites concernent :

Le rayonnement solaire arrivant au sol, et dans l'ensemble des radiations visibles du spectre, et dans des parties bien définies de ce spectre;

6

La durée d'insolation ;

Le rayonnement ultra-violet arrivant au sol, dans le domaine $0.29-0.32 \mu$;

Les mesures climatologiques classiques : le vent, la pluie, la pression barométrique, la nébulosité, la température et l'humidité de l'air, les maxima et minima de la température extérieure, la température minima sur gazon, et les températures à différentes profondeurs dans le sol ;

La mesure du degré de réfrigération ;

La nébulosité de nuit.

Chacun de ces différents domaines d'observation va être repris en détail avec le souci de présenter succinctement ce qui a été et est fait à Lwiro, plutôt que de rappeler les descriptions ou notions générales très bien connues.

A. — Rayonnement.

1. Énergie.

L'énergie est la quantité de chaleur parvenant au sol. L'unité employée est la calorie-gramme par cm², identique au langley surtout utilisé aux U.S.A.

a) Le rayonnement direct, ou le rayonnement reçu du soleil seul arrivant sur une surface maintenue normale à la direction apparente du soleil. Les montures équatoriales utilisées dans ce but ont été spécialement réalisées pour la latitude de la région de Lwiro. Elles sont étanches, et assez lourdes pour avoir une très bonne stabilité. La rotation diurne est assurée par un moteur synchrone associé à une vis sans fin, ensemble très robuste ne permettant pratiquemment aucun jeu dans la rotation du tube. Ce tube comporte 5 diaphragmes, (fig. 2), son angle d'ouverture est de 2° 54' et l'angle de pente de $1^{\circ}29'$. Son rapport surface-angle [3] est très sensiblement celui du premier appareil étalon utilisé de 1952 à 1955,

un pyrhéliomètre à disque d'argent de la Smithsonian Institution. L'élément sensible est une « pile » thermoélectrique classique Moll dans une monture du type « Service du Rayonnement » de l'Institut Royal Météorologique de Belgique. Quelques détails sur cette monture seront donnés plus loin.

FIG. 2. — Tubes à diaphragmes du pyrhéliomètre à disque d'argent (1) et du pyrhéliographe utilisé à Lwiro (2). Cotes en millimètres.

Dès le mois d'octobre 1952, le rayonnement direct a pu être obtenu sur un enregistreur potentiométrique électronique Brown, sensibilité —0,5 à + 2,5 mV, à déroulement rapide de 6"/heure. Sans la moindre interruption cet enregistreur a assuré un excellent service jusqu'en juin 1954, puis l'enregistrement a été obtenu sur un enregistreur Speedomax de la firme Leeds et Northrup, aux caractéristiques mieux adaptées.

b) Le rayonnement diffusé, ou le rayonnement arrivant du ciel seul sur une surface horizontale. Les rayons du soleil, ne devant pas parvenir sur l'élément sensible, sont arrêtés par un opercule entraîné par une monture équatoriale du même type que celle utilisée pour le rayonnement direct. Plutôt que d'adopter le procédé classique de la bande cache-soleil, il a été jugé préférable d'utiliser à Lwiro, le système de l'opercule pour éviter les corrections souvent délicates d'évaluation de la zone de ciel cachée par cette bande. Ce dernier, d'un diamètre de 5 centimètres, décrit quotidiennement autour du récepteur une circonférence d'un rayon de 49 cm. Cette distance a été déterminée de telle facon que la surface circumsolaire cachée soit exactement celle dont le ravonnement, avec celui du soleil constitue le rayonnement direct. Le récepteur est identique à celui du rayonnement direct. L'élément sensible peut être amené aisément et exactement au niveau de la partie supérieure de la monture, la position de cette dernière -- déterminée en laboratoire - par rapport à son statif horizontal est telle que l'effet d'azimut [4] sur l'élément sensible est minimum. De même que pour le rayonnement direct, la pile thermoélectrique est recouverte de deux coupelles de verre optiquement taillées, hémisphériques, de diamètre 3 et 5 cm. La coupelle de petit diamètre a surtout pour but de diminuer les courants de convection et la dépression négative du « zéro » de l'appareil [4].

Afin de réduire le plus possible les variations de température du support, ce dernier est recouvert d'un large bouclier tronconique blanc dont la forme, dessinée par l'auteur, en 1951, est telle que tout rayon lumineux d'incidence inférieure à 65° se réfléchissant sur ce bouclier ne peut atteindre la plus grande coupelle protectrice de l'élément sensible. Cet anneau, tout en protégeant le socle, évite les réflections parasites possibles sur un écran horizontal.

L'arrivée tardive du matériel d'enregistrement n'a pas permis de mesurer cette composante avant novembre 1953. A cette époque, un enregistreur électronique Brown à 12 courbes, pont de Wheatstone, a été mis en service. Il devait être utilisé jusqu'en juin 1954, puis remplacé par un enregistreur Speedomax. c) Le rayonnement global, ou le rayonnement reçu sur une surface horizontale. Exprimant l'énergie qui atteint tout corps exposé au rayonnement de l'hémisphère céleste, c'est le plus intéressant. Il tient compte du rayonnement diffusé et du rayonnement direct, l'influence de ce dernier sur une surface horizontale étant égale à son produit par le sinus de la hauteur du soleil.

D'octobre 1952 à juillet 1953, le rayonnement global a été enregistré photographiquement par l'association à un galvanomètre d'un solarimètre identique à celui du rayonnement diffusé. Le montage, très classique, tenait compte de l'amortissement du galvanomètre et du meilleur rendement à obtenir de la pile thermoélectrique.

A partir d'août 1953 fût utilisé l'enregistreur Brown à 12 courbes sur lequel devait être aussi obtenu, peu après, le rayonnement diffusé. Enfin, en juin 1954 le rayonnement global était doté, comme chacune des deux autres, composantes déjà vues, d'un enregistreur Speedomax à une courbe continue.

2. Durée.

Cette durée du rayonnement implique dans l'intensité du rayonnement direct la notion de « niveau » ou « seuil » minimum. Le premier dans une échelle croissante, et le seul pratiquement utilisé, est celui au-delà duquel apparaît l'ombre d'un corps exposé au soleil. Le temps pendant lequel le rayonnement direct dépasse ce seuil est appelé la *durée d'insolation*.

Cette durée est l'une des principales caractéristiques d'un climat. Elle est généralement obtenue avec un héliographe donnant uniquement les temps d'ensoleillement, mais peut aussi l'être en mesurant d'une manière quelconque sur un enregistreur du rayonnement direct, le temps pendant lequel ce rayonnement dépasse un certain seuil. Il prend alors le nom d'héliographe actinométrique [5]. Faute d'héliographe, c'est ce dernier procédé aui a utilisé de novembre 1952 à mars 1953. A cette date un héliographe Campbell-Stokes a été mis en service tout en conservant un enregistrement permanent des données de l'héliographe actinométrique. Le seuil de ce dernier a été fixé à 0.025 + 0.005 cal. cm⁻² min⁻¹. Nous n'insisterons pas ici sur les erreurs de chacune de ces méthodes de mesure de la durée d'insolation. L'héliographe à boule de verre a déjà été étudié et comparé à d'autres instruments [5, 6], on en connaît les deux principales causes d'erreur : la pluie ou rosée, et la variation rapide de la nébulosité. Bien que l'on puisse objecter à l'héliographe actinométrique d'exprimer non seulement le rayonnement du soleil mais aussi celui de la région du ciel circumsolaire correspondant à l'ouverture du tube à diaphragmes, la mesure de la durée d'insolation obtenue avec cet appareil est très précise et peut être utilisée pour déterminer la correction à apporter à l'héliographe à boule de verre, correction qui dépend essentiellement du climat de la région où l'appareil est utilisé. Une comparaison sur trois mois seulement entre les deux types d'héliographe montre que la correction positive à apporter à l'appareil Campbell varie à Lwiro de 2 à 15 % par décade, en moyenne 8 % pour la période considérée. Bien que cette valeur doive être précisée on ne doit pas s'attendre à un très bon accord en raison d'une part, des alternances rapides de pluie et de beau temps et surtout de la présence de rosée qui diminue beaucoup la sensibilité de l'appareil pendant la première heure de la journée, et d'autre part, de la forte insolation qui, par la brûlure trop étendue du carton, accroît la durée d'ensoleillement dans les périodes de variation rapide de la nébulosité.

Les données publiées, tableaux 4 à 17 et graphique 3,

ont été obtenues de novembre 1952 à mars 1953 avec l'héliographe actinométrique, et à partir d'avril 1953 avec l'héliographe Campbell. La colonne R exprime, à partir de juillet 1953, le rapport insolation observée insolation possible. Cette dernière a été calculée pour une hauteur du centre du disque solaire supérieure ou égale à 4 degrés, avec réfraction, et en tenant compte du relevé topographique.

B. - Climatologie.

Pour connaître le climat, les mesures du rayonnement doivent être accompagnées de mesures des autres principaux éléments météorologiques. Ces mesures sont effectuées à Lwiro avec tout le soin voulu, mais sont considérées comme un complément, sauf peut-être pour la température et l'humidité, ces deux éléments jouant un rôle primordial dans le comportement humain en Afrique centrale. Les observations synoptiques sont réduites à une observation par jour.

1. Pression barométrique.

Elle est enregistrée depuis mars 1953 avec un microbarographe Casella d'une sensibilité voisine de 2,5 mm. de papier pour 1mm de mercure. Un baromètre Fortin à poste fixe permet un contrôle quotidien de l'enregistrement. Les diagrammes ne sont dépouillés que lorsqu'ils sont utilisés.

2. Pluie.

Les mesures de quantité d'eau recueillie ont été commencées le 1^{er} février 1953 avec un pluviomètre Casella d'ouverture 8 pouces placée à 1 m au-dessus du sol. Ces mesures ont été complétées à partir de juin 1956

12

avec celles données par un pluviographe Casella d'ouverture 5 pouces située à la même hauteur. Ces deux appareils sont placés dans une clairière et non sur une grande étendue entièrement dégagée, afin de réduire l'influence du vent. Le plus proche obstacle, à 15, 20 mètres, est constitué par la végétation naturelle, épaisse, d'une hauteur de 3 à 4 mètres. Le tableau 1 et le graphique 1 donnent la pluie tombée de février à décembre 1953, par pentades. Sur le tableau, P désigne la pentade, T le nombre de millimètres d'eau recueillis, n le nombre de jours de pluie, M le maximum recueilli en une journée (de 09 h la veille à 09 h le jour de la mesure, en temps local), S la somme mensuelle pour les deux premiers termes. Si l'on admet que le caractère « pluvieux » est fonction du total de la quantité d'eau recueillie et du nombre de jours de pluie, le graphique devient plus lisible en portant avec une échelle arbitraire pour chaque pentade, le produit de ces deux valeurs, on réduit ainsi beaucoup l'importance des pluies violentes des orages isolés (partie noire du graphique). Ce caractère devrait, pour être mieux déterminé, utiliser un seuil minimum définissant un «jour à précipitation». Mars, avril, mai, juin, septembre, octobre, novembre sont les mois nettement pluvieux de cette année. Avec le caractère de pluviosité donné par VANDENPLAS [7] on obtient : février : sec, mars : humide, avril : très humide, mai : humide, juin : mi-sec, juillet : sec, août : très sec, septembre : humide, octobre : humide, novembre : humide, décembre : mi-humide.

3. Vent.

Cette donnée climatologique est obtenue une fois par jour à 09 h depuis le 1^{er} janvier 1953 dans l'échelle télégraphique habituelle de 0 à 9. Depuis janvier 1954, un enregistrement continu avec anémographe mécanique Filotecnica donne la direction et la distance parcourue.

4. Nébulosité.

L'observation de la nébulosité commencée en décembre 1952 est faite une fois par jour à 09 h. Depuis juin 1955 des observations complémentaires sont faites à 08 h, 10 h, 14 h, 16 h. Outre la nébulosité générale du ciel, ces observations spécifient la transparence du ciel, la nature des nuages principaux de hauteur supérieure à 15 à 20°, et l'éclat du soleil, soit l'observation d'éléments à incidence directe sur le rayonnement observé au sol.

De plus, des observations de la nébulosité de nuit ont été commencées en décembre 1952 pour étudier la possibilité d'effectuer certaines observations astronomiques et géophysiques. Les résultats ayant déjà fait l'objet d'une publication [8] on indiquera seulement ici la bonne corrélation constatée entre la température minima sur gazon et une seule observation de nébulosité de nuit faite entre 21 et 23 h.

5. Température et humidité.

Un ensemble psychrométrique de la firme Honeywell-Brown, en service continu depuis janvier 1953, comporte sous abri un bulbe sec et un bulbe humide, tous les deux soumis à une ventilation forcée voisine de 5 m/sec. Cet ensemble a toujours donné de bons résultats. Le contrôle est fait au moyen d'un psychromètre Assman grand modèle Siap ayant une vitesse d'aspiration de 5 mètres. Sur le même enregistreur les températures à 1 cm sous sol nu et à 1, 10, 20, 50 et 100 cm sous gazon sont aussi obtenues en permanence. La précision est de l'ordre du dixième de degré C, des contrôles sont fait périodiquement. L'enregistreur, bien surveillé, ne donnant aucune difficulté, le procédé de mesure est recommandable si les thermomètres à résistance, à cause de l'étanchéité rigoureuse indispensable, sont mis en terre avec toutes les précautions voulues.

Ces températures, ainsi que l'humidité, feront l'objet d'une publication particulière. Le tableau 2 et le graphique 2 donnent seulement pour 1953, par pentade, la température moyenne Tm de l'air, le maximum absolu M, et le minimum absolu m.

C. — Mesures particulières.

1. Ultra-violet.

Autant par souci d'étendre l'étude du spectre de la radiation solaire que pour obtenir une donnée bioclimatologique importante, une cellule au cadmium, vidée, en quartz, de la firme Cunther et Tegetmeyer, a été mise en station horizontalement, à partir d'octobre 1953. Par un dispositif électronique simple déjà bien connu, la durée de la décharge d'un condensateur est fonction de l'énergie reçue, un compteur totalise et imprime chaque demi-heure (fig. 3). Étant donné les fluctuations de tension des piles sèches de 90 et 45 volts et surtout les fluctuations de la tension de chauffage du filament de la lampe, les données obtenues présentent quelque imprécision. En plus de ces erreurs qui ne pourraient être évitées qu'avec un matériel plus considérable, il faut ajouter que la cellule présente une forte variation de sensibilité en fonction de l'incidence de rayonnement.

Malgré tout cela, l'appareillage a été maintenu en service pour montrer la possibilité d'avoir une mesure continue aisée de l'ultra-violet dans le domaine de sensibilité de la cellule au cadmium. Ce domaine s'étend de 2400 à 3200 A environ, avec un maximum de sensibilité à peu près au milieu de cet intervalle, lequel centre correspond très sensiblement à celui de la courbe de sensibilité erythémale de la peau, alors que du côté des grandes longueurs d'onde la courbe de la cellule est bien plus atténuée que celle de l'érythème. De nombreuses études parmi lesquelles on peut citer celles de BUTTNER [9] LINKE, DORNO, ayant été faites sur l'emploi de la cellule au cadmium en bioclimatologie — même avec cellule sphérique — il n'est pas nécessaire d'insister davantage. Les données obtenues à Lwiro avec cet appareillage seront traitées statistiquement pour montrer en particulier la variation journalière, mensuelle, saisonnière, annuelle.

Pour atteindre une analyse plus précise du rayonnement mesuré avec une telle cellule, une cellule identique a été installée dans les mêmes conditions en janvier 1956 pour obtenir un enregistrement continu sur un potentiomètre électronique 0-2,5 mV Honeywell-Brown. Le principe de la mesure (fig. 3) repose sur le contrôle du courant plaque d'une lampe triode par la variation de son potentiel de grille (emploi de la lampe électromètre, montage connu).

2. Énergie dans différents domaines spectraux.

Pour apporter une contribution notamment aux études météorologiques (études des masses d'air) et à d'autres services comme l'agriculture (photosynthèse), l'actinométrie doit étendre ses mesures à celles de l'énergie correspondant à différentes parties du spectre solaire. Si les première études faites ont été sporadiques, citons seulement L. GORCZYNSKI [10], M. AITOFF [11], R. FAILLE-TAZ [12], elles sont de plus en plus étendues à des mesures continues grâce à la stabilité des filtres produits actuellement dans l'industrie. Pour faire de telles mesures en rayonnement global ou diffusé, le procédé le plus simple semble de disposer de filtres de forme hémisphérique. De telles coupelles n'ayant pu être réalisées avec la

 $F_{IG.}$ 3. — Enregistrement de l'ultra-violet avec cellule au cadmium en impulsions et en continu.

matière première des filtres Schott, elles l'ont été, en 1952, avec des matériaux de la firme Parra-Mantois (France) taillés à l'Institut d'Optique de Gand.

Parmi les filtres VB2, VO2, VJ3, VR1, de Parra-Mantois, deux sont très proches des filtres Schott OG1 et RG2, comme le montre les courbes de transmission (fig. 4). Les limites de transparence ne sont pas excellentes, mais l'imprécision qui en résulte peut être jugée négligeable vis-à-vis des erreurs inhérentes à la méthode d'observation (coefficient de hauteur, effets de la température, différence entre les transmissions maximum de chaque filtre, etc.).

Depuis mai 1955, l'enregistrement continu du rayonnement global avec trois filtres, et celui du rayonnement direct avec des filtres de même nom, est obtenu sur un enregistreur potentiométrique Speedomax à six courbes. Des filtres de même coulée sont conservés pour des contrôles périodiques visant à corriger une altération éventuelle des filtres en usage permanent.

FIG. 4. — Transmission des filtres colorés Parra-Mantois VB2, VJ3, VR2 et Schott OG1 et RG2.

3. Degré de réfrigération.

Afin d'étendre le domaine d'utilisation de ses données, la station de rayonnement de Lwiro enregistre depuis juillet 1952 les valeurs horaires de la « grandeur du refroidissement » obtenues avec un frigorimètre de Davos. Ainsi, après les mesures du rayonnement, et dans le spectre visible, et dans une partie de l'U. V., et dans plusieurs domaines spectraux, on pénètre dans le domaine des recherches bioclimatologiques. L'appareil utilisé est classique, toutefois deux modifications ont été apportées :

a) Le remplacement par l'auteur du bilame original par un thermomètre à contact réalisé en 1951. Ce système a été adopté par le Service du Rayonnement de l'I.R.M. Belgique qui en a modifié par la suite le circuit électrique original du contrôle de la température [13] de telle sorte que l'emploi du thermomètre donne entière satisfaction.

b) La durée d'échauffement de la boule étant trop faible à Lwiro en raison de la température extérieure et de l'insolation, l'intensité du courant de chauffage a été légèrement réduite.

On ne reviendra pas ici sur la signification physique des grandeurs telles que la «température effective» ou le «coefficient de refroidissement» ni même sur l'efficacité du frigorimètre, il est de remarquables travaux sur ce sujet, tels ceux de K. BÜTTNER [9] et C. HENNE-BERGER [14]. Disons seulement que cet appareil peut nous fournir des données bioclimatologiques importantes en région équatoriale ou l'effet physiologique résultant de l'ensemble des éléments : rayonnement, température, vent, pluie, humidité, n'a été que peu étudié. Il faut aussi ajouter qu'en raison du rayonnement solaire relativement important reçu aux latitudes équatoriales toute l'année, cet appareil doit être complété afin de donner la « grandeur d'échauffement ».

III. – L'ENREGISTREMENT DES DONNÉES DU RAYONNEMENT ET LEUR ANALYSE

La station de Lwiro possède seulement l'appareillage nécessaire et suffisant pour obtenir des données continues et contrôlables. On verra par la suite les résultats obtenus à ce jour avec un tel ensemble.

A. — Équipement.

1. Appareils étalons.

La station disposait dès 1952 d'un pyrhéliomètre à disque d'argent S.I.88. Cet appareil bien connu pour sa précision et sa fidélité demande une certaine expérience pour être utilisé correctement. La réduction de ses valeurs est faite à Lwiro en utilisant la formule simplifiée préconisée par FUESSNER [15]:

$$I = ER[1 + F + (T - 30) (k - k')] = Rg$$

où E, k, et k' sont des constantes, T la moyenne de la température du thermomètre pendant l'échauffement, et g une fonction simple de T. Les valeurs de g ont été calculées pour les valeurs moyennes de la différence T — $t: 10^{\circ}, 13,5^{\circ}, 17^{\circ}$ valables respectivement pour les intervalles T-t de 7° à 12°, de 12 à 15°, de 15 à 19°.

La précision des mesures faites avec le pyrhéliomètre à disque d'argent est de l'ordre de ± 0.3 %, supérieure à la précision résultant de considérations théoriques. Les étalonnages du pyrhéliomètre enregistreur se sont avérés remarquablement constants dans le temps. Ainsi, pour ne citer que la période de juin 1954 à janvier 1956, la moyenne des écarts à la valeur moyenne du coefficient exprimé en calories par division du papier de l'enregistreur est de 2 millièmes. La précision de ces étalonnages sera étudiée plus loin.

Actuellement deux pyrhéliomètres du type Angström, de la Smithsonian Institution, A 15 et A 20, portent à trois le nombre d'appareils étalons de la station. L'échelle employée est celle de la Smithsonian Institution 1913 (¹).

2. Enregistreurs.

Comme il a été dit plus haut, plusieurs types d'enregistreurs ont été utilisés depuis le début des mesures. On n'insistera ici que sur ceux de la Leeds et Northrup Cy les Speedomax type G employés actuellement. L'échelle de nos potentiomètres électroniques va de — 1 à + 16 mV, la partie négative étant indispensable pour les mesures actinométriques, car elle permet de mettre en évidence la f.e.m. négative des récepteurs et d'améliorer l'origine de l'intégration.

Tous les enregistreurs à une direction sont munis d'intégrateurs mécaniques donnant à l'origine 100 unités par mV-heure. La surface correspondant à une unité étant supérieure à la précision du dépouillement, la sensibilité du système d'intégration a été doublée amenant à 0,06 cm² la surface par unité. Étant donné le type de récepteur employé et l'énergie mesurée, la sensibilité des enregistreurs des rayonnements direct et diffusé a été augmentée, leur valeur d'intégration devenant 140 unités par mV-heure.

On n'insistera pas ici sur ce type d'intégrateur bien

⁽¹⁾ Depuis le 1^{er} janvier 1957, l'échelle Internationale 1956 est utilisée.

connu et déjà décrit [4]. Indiquons seulement son principe : une roue tournant à vitesse constante entraîne pendant une partie de chaque tour une roue dentée dont la rotation est transformée en unités arbitraires sur un compteur, la valeur de cette rotation étant déterminée par l'écart angulaire entre un point fixe et un point mobile solidaire du curseur de la résistance variable du circuit potentiométrique.

Sa sensibilité dépend de plusieurs facteurs :

a) Le rapport des diamètres des deux roues d'un engrenage tronconique détermine le nombre d'unités d'intégration par unité d'élongation de la plume;

b) La courbe intégrée est décomposée en rectangles dont la dimension constante représente une durée de 2,4 secondes, soit pour la vitesse normale de déroulement : 0.6 m/m;

c) La roue dentée entraînée par un rochet comporte 350 dents environ limitant ainsi la sensibilité à 3/1000 de la longueur totale de l'échelle, soit encore 5 unités/heure;

d) La détermination du niveau « intégration nulle » doit être faite avec exactitude, une erreur sur ce niveau devenant une erreur systématique. Par le procédé graphique la précision obtenue sur la détermination de ce niveau $z\acute{ero}$ est supérieur à 2 unités/heure.

De ces quatre facteurs, les deuxième et troisième agissent directement sur la précision de l'appareil. L'erreur produite par la durée de la base de temps de 2,4 secondes de l'intégration pouvant être considérée comme négligeable, la sensibilité est essentiellement déterminée par le nombre de dents de la roue dentée. Bien que l'erreur maximum absolue (1 dent) reste constante et égale à 0,8 m/m du papier, (à Lwiro cette erreur correspond par demi-heure à 0,3 cal. cm⁻² environ pour le rayonnement global et 0,2 cal. cm⁻² pour les rayonnements diffusé et direct) l'erreur relative est inversement proportionnelle à la déviation, de l'ordre de 4 millièmes pour les 2/3 de l'échelle totale, 8 millièmes pour le premier tiers, et atteignant environ 8 centièmes pour une d.d.p. nulle quand le zéro de l'intégrateur est repoussé à -0,7 mV environ de l'échelle. Ces valeurs de l'erreur relative --celle affectant les résultats - sont des valeurs maxima correspondant à une dent entière de la roue. Par suite, lors du contrôle fait le soir sur les enregistrements avec d.d.p. nulle, dont on reparlera plus loin, le style occupe alors une position variant chaque jour entre des limites étroites, car la d.d.p. n'est pas rigoureusement nulle, et de plus la sensibilité du système potentiométrique intervient. Il en découle que d'un jour à l'autre le nombre d'unités de l'intégrateur avec rayonnement nul varie (effectivement les contrôles quotidiens montrent que l'écart est généralement nul ou de 2 %, assez rarement de 5 %, ce qui est inférieur au 8 % donnés plus haut). Il semble que l'on ait là l'explication de la « dérive» quotidienne signalée par R. DOGNIAUX et R. PASTIELS [4], indépendamment de la dérive moyenne due à l'usure. Cette dérive apparente ne serait donc qu'une erreur instrumentale instantanée ne devant pas intervenir dans le dépouillement des observations.

On peut mettre en évidence le passage du rochet d'une dent à la suivante en mesurant le nombre d'unités d'intégration correspondant à des déplacements très petits de la plume. Cette opération est délicate car on arrive à la limite de la précision de la réalisation mécanique. Néanmoins les résultats montrent assez nettement les différents paliers prévus atteignant 3,5 unités par heure alors que la valeur théorique résultant de considérations mécaniques est de 5 unités.

Ainsi il faut retenir la nécessité du décalage de la base

de l'intégration et l'utilisation au maximum possible de l'étendue de mesure de l'enregistreur dont on modifie la sensibilité si c'est nécessaire. Moyennant ces précautions l'emploi de ce type d'intégrateur n'affecte la valeur de la radiation solaire obtenue par demi-journée que d'une erreur de 1 % au plus.

A chaque unité de l'intégrateur correspond deux unités d'un compteur adapté à chaque enregistreur. Ces compteurs impriment automatiquement à chaque demi-heure le total obtenu et reviennent à zéro. Leur contrôle quotidien est fait grâce au compteur à lecture directe appartenant à chaque enregistreur. Bien que le temps d'impression des compteurs ne soit que de l'ordre de deux secondes, cet arrêt entraîne une erreur systématique par défaut négligeable en valeur relative par suite du début de l'intégration dans la partie négative de l'échelle. Les impressions demi-horaires sont commandées par une horloge à contacts qui provoque au même moment une marque de temps sur les enregistrements. Cette horloge donne le temps solaire vrai, qui est le temps adopté pour toute la partie radiation de la station, la correction de l'équation du temps étant faite chaque jour à midi, à partir d'une horloge temps civil dont la marche est contrôlée une fois par jour avec les signaux horaires.

B. — Méthodes de réduction.

Les méthodes de réduction des enregistrements de la radiation solaire dans tout le spectre visible varient suivant le nombre et le type des appareils employés, la précision recherchée, et le temps qu'il est possible d'y consacrer.

Le nombre des appareils utilisés à Lwiro ayant été augmenté avec le temps, la méthode de réduction initiale a été modifiée. En 1953 l'équipement comprenait seulement un pyrhéliographe et un solarigraphe pour le rayonnement global. La réduction des données du pyrhéliographe est immédiate, tenant compte seulement du coefficient d'étalonnage de l'appareil en cal. cm⁻². min⁻¹. par unité de graduation du papier et de la vitesse de déroulement de ce dernier. L'énergie étant proportionnelle à la surface de l'enregistrement, le principal travail consiste à planimétrer ce dernier, ce qui a été fait à Lwiro par demi-journée d'octobre 1952 à juin 1954 sur des courbes quotidiennes de l'ordre de 20 dm².

La réduction des données du solarigraphe part du même principe mais doit tenir compte de la variation de sensibilité du récepteur avec l'incidence du rayonnement, autrement dit, dans le cas du ravonnement global. avec la hauteur du soleil principalement. S'il est possible de déduire le rayonnement diffusé du rayonnement global et du rayonnement direct sur une surface horizontale par simple différence, cette opération faite pour des valeurs demi-horaires ou même horaires demande un travail important, difficile à envisager si les enregistreurs ne sont pas munis d'un dispositif d'intégration. Aussi, d'octobre 1952 à juillet 1953, les réductions demi-journalières ont été faites en partant d'un coefficient moyen décadaire par unité de surface enregistrée, exprimé en calories par cm². La quantité décadaire totale en calories était calculée en partant de la déviation moyenne décadaire pour chaque demi-heure ronde à laquelle on appliquait le coefficient de l'appareil récepteur (en cal. cm-2. min⁻¹.) pour la hauteur du soleil correspondant à l'instant considéré et en adoptant le résultat pour une durée de 30 minutes. La surface enregistrée par demi-journée était obtenue par planimétrage.

Avec les types courants de piles thermoélectriques dont la variation de sensibilité avec l'incidence a presque toujours la même allure générale, l'inconvénient d'un tel procédé de réduction est de donner des valeurs trop élevées. Cet excès, mesuré dans plusieurs cas, a atteint 5 % dans le cas de journées à très faible rayonnement direct. Dans le cas de stations n'effectuant pas de mesures de rayonnement diffusé cette erreur est faible en comparaison d'erreurs diverses dues à l'appareillage même.

Dès que le rayonnement diffusé a pu être obtenu, en août 1953, le procédé décrit plus haut a été modifié en appliquant le *coefficient de hauteur* à la partie du rayonnement global due au soleil seul, le rayonnement du ciel demi-horaire moyen par décade étant tiré de l'enregistrement obtenu avec l'appareil récepteur du rayonnement diffusé. La précision de ce dernier intervenant dans la précision des valeurs du rayonnement global, il est nécessaire de déterminer avec soin le coefficient, en cal. cm⁻². min⁻¹., à adopter pour le rayonnement du ciel. Ce rayonnement provenant de tout l'hémisphère céleste, la difficulté est évidente et bien connue des stations actinométriques qui la résolvent parfois de façon différente.

A Lwiro, la hauteur effective résultante adoptée correspond à la hauteur à laquelle devrait se trouver toute l'énergie envoyée par le ciel pour donner sur l'élément récepteur le même résultat que lorsqu'elle provient de tout l'hémisphère, en tenant compte, et de la sensibilité du récepteur en fonction de l'incidence du rayonnement, et de la répartition du rayonnement du ciel en fonction des zones considérées. Cette répartition était alors tirée (en 1953) des valeurs publiées par C. G. Abbot [16] pour un ciel sans nuages. Ces deux restrictions à la simple considération d'un ciel de luminance uniforme sont très importantes. Elles permettent d'arriver, non à une valeur exacte de la hauteur effective qu'il est évidemment impossible d'obtenir en raison de la variation permanente du ravonnement sur la surface du ciel. mais à une bonne détermination de cette hauteur qui ne soit pas empirique.

Ainsi, chaque récepteur pour le ravonnement diffusé a une hauteur effective propre dont le calcul nécessite évidemment la connaissance précise de la variation de la sensibilité du récepteur en fonction de l'incidence. Cette dernière doit être déterminée de préférence à l'aide d'étalonnages fréquents pour différentes hauteurs de soleil, en veillant à ce que l'opercule utilisé cache le soleil et une surface circumsolaire identique à celle admise dans le pyrhéliomètre. L'allure de la courbe obtenue est sensiblement la même pour tous les récepteurs horizontaux courants, mais on obtient parfois des variations inverses pour deux récepteurs de fabrication identique. Une telle différence est due à la mauvaise planéité de la surface sensible, particulièrement pour les piles thermoélectriques du type Moll où des segments soudés et juxtaposés constituent cette surface même. Pour une surface réceptrice plane, un moyen simple de remédier à la diminution de sensibilité quand l'incidence croît est d'accroître la section droite du faisceau arrivant sur cette surface pour les fortes valeurs de l'incidence, ce à quoi on peut parvenir en utilisant une surface plane surmontant un anneau tronconique de faible hauteur (recherches de l'auteur, en 1948, non publiées). Un résultat identique semble être obtenu avec les piles thermoélectriques Volochine dont la surface réceptrice est légèrement convexe, la variation de sensibilité de ces éléments en fonction de l'incidence est remarquablement faible [4].

Avec l'arrivée en juin de plusieurs enregistreurs Speedomax à une direction munis d'intégrateurs mécaniques, la méthode de réduction a été réétudiée et améliorée.

Avec les procédés mécaniques et électriques décrits précédemment, on obtient pour chacune des trois composantes : directe, globale, diffusée, la valeur de la superficie de chaque enregistrement par demi-heure. Comme on l'a vu plus haut, le niveau d'intégration a été repoussé dans la partie négative de l'échelle de l'enregistreur potentiométrique, et sa valeur exacte déterminée par essais en intégrant des surfaces connues. La correction nécessaire dans l'évaluation des surfaces cherchées est faite aisément en considérant l'écart entre ce niveau zéro intégration et le zéro électrique du récepteur. On considère pour ce dernier le zéro immédiat obtenu lorsque le récepteur est rapidement recouvert, procédé bien connu Ouelques suggestions ont déjà été faites pour expliquer la dépression négative ou positive qui caractérise le zéro immédiat d'un récepteur thermoélectrique type Moll, employé sous coupelle de verre, ce zéro pouvant être inférieur ou supérieur au zéro de repos. Il semble bien que la relation entre la température de la coupelle externe (liée en partie à son émission vers le ciel), celle de la petite coupelle (effet de serre), et celles des soudures actives (liée en premier ordre à l'intensité de ravonnement), puisse expliquer les divers types de dépression du zéro, en tenant compte et de la température ambiante, et de l'état du ciel (clair ou couvert). L'intervention de ces trois facteurs souvent indépendants rend l'étude du phénomène complexe et bien que le principe soit concevable et expérimentalement vérifiable, l'absence de valeurs exactes rend inutile toute longue explication.

Le zéro électrique obtenu pendant la demi-heure précédant l'apparition du jour et suivant celle de l'apparition de la nuit permet un contrôle quotidien du niveau *zéro intégrateur*.

Avec un coefficient donnant le nombre de calories par unité de l'intégrateur mécanique l'évaluation du *rayonnement direct* est immédiate.

Pour le rayonnement diffusé, la hauteur effective résultante définie plus haut a été précisée. En effet, le récepteur ayant une sensibilité variable avec l'incidence et le ciel étant décomposé simplement en trois zones de hauteurs respectives : 0 à 30°, 30 à 60°, 60 à 90°, il faut appliquer à l'émission de ces zones le coefficient correspondant, par exemple celui pour 15°, 45°, 75°. Mais la variation de sensibilité du récepteur étant généralement très élevée entre 0 et 20 ou 30°, et même inconnue pour les cinq premiers degrés, il est nécessaire de calculer par une intégration approchée, l'importance de différents segments (par exemple de 5 en 5 degrés) composant la zone inférieure 0-30°. Un tel calcul apporte une amélioration pouvant atteindre plusieurs centièmes, fonction de la sensibilité par rapport à l'incidence.

De plus, la répartition de l'émission déjà citée utilisait une moyenne de valeurs obtenues à Hump Mountain avec un ciel de luminance sensiblement uniforme. La différence avec les valeurs théoriques a semblé telle qu'il a été jugé bon de mieux connaître cette répartition. Aussi, 162 mesures ont été faites, exprimant pour chacune des trois zones de 30º la valeur de l'énergie reçue en pourcentage du rayonnement total du ciel, en fonction de la nébulosité. La figure 5 montre les courbes médianes obtenues, très régulières. Les valeurs individuelles, non portées sur la figure, montrent une nette concentration pour les valeurs faibles et fortes de la nébulosité et généralement une dispersion plus grande pour une nébulosité moyenne. Dans l'ordre croissant de la nébulosité de 0 à 10, le nombre de mesures faites est : 5, 23, 8, 15, 13, 9, 14, 17, 26, 21, 11, pour chaque zone de 30°. Si on retrouve sur ces courbes les valeurs d'Abbot pour le cas du ciel sans nuages (30-52-18 % respectivement) on v voit aussi que ces valeurs ne peuvent être admises en toute circonstance. Pour une nébulosité moyenne, la répartition passe à 23-55-22 % sensiblement, pour atteindre 15-28-27 % environ par ciel entièrement couvert.

On a ainsi été amené à distinguer différents types de demi-journées, l'application à chaque valeur horaire ou demi-horaire apportant trop de difficultés aux réductions. Le rayonnement direct, par son calcul rapide, est utilisé pour faire la discrimination entre *beau temps*, *temps moyen*, et *temps faible*, au point de vue énergétique. Si on porte les valeurs du rayonnement direct I par demijournée en fonction de la nébulosité moyenne calculée sur trois observations pendant la même période, on voit très nettement une variation régulière non linéaire. La *figure* 6 montre une telle courbe tracée avec 155 valeurs réparties les concentrations de points les plus marquées. Pour une nébulosité moyenne égale et supérieure à 8 dixièmes les valeurs de I restent inférieures à 80 calories, pour une nébulosité comprise entre 3 et 8, I est très dispersée mais nettement comprise entre 80 et 250 calories, et pour une nébulosité faible, inférieure ou égale à 3 dixièmes, I est supérieure à 250 calories.

Ces valeurs obtenues à Lwiro peuvent évidemment être précisées pour chaque station, la mesure du rayonnement direct n'étant pas absolument indispensable. Une détermination subjective des limites du rayonnement direct pour distinguer les demi-journées de temps beau, moyen ou faible, n'est pas recommandée, car elle conduit à des valeurs beaucoup trop imprécises, et par suite à un emploi erroné des valeurs des coefficients employés pour les calculs des rayonnements global et diffusé dont les valeurs, par exemple, peuvent être entachées d'une erreur de 1 % avec les appareils utilisés à Lwiro.

Ce procédé n'est pas rigoureux en ce qu'il utilise la relation entre la radiation directe et la nébulosité alors que la répartition de l'émission par les différentes zones du ciel a été reliée à la nébulosité. De plus, les limites de 80 et 250 calories ainsi nettement définies amènent inévitablement des erreurs que l'on ne pourrait supprimer qu'en augmentant le nombre de types de temps.

Ces quelques considérations visant à améliorer le calcul difficile du rayonnement diffusé ne sont pas inu-

tiles, surtout pas négligeables comme nous le verrons par la suite, les mesures actinométriques atteignant maintenant une grande précision.

FIG. 5. — Émission du ciel, partagé en trois zones, en fonction de la nébulosité.

Le RAYONNEMENT GLOBAL est par définition la somme, sur une surface horizontale, du rayonnement diffusé et du rayonnement direct. Il faut donc déterminer l'importance de ces deux parties. On vient de décrire comment obtenir la première. Pour la soustraire du rayonnement global enregistré, on calcule ce dernier comme s'il était entièrement formé de rayonnement diffusé avec le procédé décrit ci-dessus. Dans le cas de rayonnement direct non nul, le résultat est supérieur au rayonnement diffusé obtenu indépendamment. A la différence, due au soleil seul, on applique la correction de la variation de sensibilité du récepteur de rayonnement global en fonction de l'incidence, d'où une « différence corrigée » exprimant la participation du soleil, et dont la somme avec le rayonnement diffusé donne la radiation globale.

Ainsi apparaît toute l'importance de la définition et de la détermination de la hauteur effective résultante qui intervient deux fois dans le calcul du rayonnement global. Ce calcul est effectué par demi-heure comme pour les ravonnements direct et diffusé, et comme pour ce dernier, le type de temps beau, moyen, ou faible, détermine pour chaque demi-journée le coefficient à employer pour transformer la surface de la courbe entièrement en rayonnement diffusé. La correction à apporter à la partie radiation globale due au soleil est déterminée par la hauteur du soleil correspondant au moment où le soleil est effectivement intervenu à l'intérieur de la demi-heure considérée, ce moment étant lu sur l'enregistrement du rayonnement direct avec une précision de 5 minutes de temps. Cette précision n'est pas superflue notamment quand la hauteur du soleil est faible, en pratique inférieure à 20° car pour ces valeurs la variation du sinus est très rapide, celle de la sensibilité de la surface réceptrice l'est aussi, et dans la grande majorité des cas ces deux effets s'ajoutent.

L'effet de la température sur les récepteurs thermoélectriques a jusqu'a présent été négligée à Lwiro, en raison des faibles variations de la température ambiante au cours de l'année. Il est cependant probable qu'étant donné la précision actuellement atteinte il en sera tenu compte dans l'avenir.

FIG. 6. --- La radiation directe par demi-journée en fonction de la nébulosité moyenne.

En résumé, la réduction des enregistrements quotidiens des trois composantes nécessite les opérations suivantes :

a) le contrôle des unités d'intégration imprimées, totalisées pour toute la journée, en comparant avec la lecture faite une fois par jour, du compteur adapté à l'enregistreur.

b) La correction des enregistrements, en transformant les surfaces des zéros en unités d'intégration, cette surface étant considérée comme rectangulaire pour les piles thermoélectriques Moll. Ces zéros sont faits toutes les deux heures, parfois plus souvent, en occultant entièrement le rayonnement parvenant sur les trois appareils. Leur durée est de 1 minute seulement car on considère comme valeur zéro, le zéro qui s'établit immédiatement après le recouvrement.

c) La valeur du zéro est supposée valable pour la durée de deux heures l'entourant mais il est parfois nécessaire d'interpoler entre le zéro de nuit et le premier et le dernier zéro de la journée. La différence entre la valeur du zéro
et la base de l'intégration fournit la correction à apporter au nombre d'unités d'intégration des quatre demi-heures correspondantes pour obtenir la surface effectivement due à la radiation, surface exprimée en unités d'intégrateur.

Ces opérations sont faites pour chacune des trois composantes.

d) La réduction en calories des rayonnements direct QD, diffusé Qd, et global transformé en diffusé Q', ne nécessite plus que la multiplication par un facteur constant, à la correction de température près, et en tenant compte, pour les deux dernières composantes, du type de demi-journée défini à partir du rayonnement direct.

e) La différence entre les valeurs Q' et Qd, quand QDnon nul, est alors transformée en utilisant le rapport de la sensibilité du récepteur du rayonnement global pour la hauteur de soleil considérée, à cette sensibilité pour la hauteur effective résultante. La somme du résultat et du rayonnement diffusé exprime le rayonnement global.

L'ensemble de ces opérations auxquelles il faut ajouter le contrôle dont on va parler plus loin, représente quatre heures de travail par journée d'enregistrement.

C. — Étalonnages.

Les comparaisons entre étalons pyrhéliométriques présentent des difficultés bien connues qui ont déjà été l'objet d'analyses poussées, en dernier lieu celle de L. Bossy et R. PASTIELS [17].

Les étalonnages des récepteurs de rayonnement direct, que l'on peut considérer comme des étalons secondaires, présentent les mêmes difficultés, à moins que le pyrhéliomètre utilisé pour l'enregistrement soit le même que l'appareil étalon, comme c'est sensiblement le cas pour

l'actinomètre blindé de Linke-Feuszner protégé par une lame de quartz. Généralement il n'en est pas ainsi.

Pour des raisons de protection contre le climat nous avons vu que le pyrhéliomètre utilisé à Lwiro comportait, monté dans un tube à diaphragmes, le même récepteur que pour les rayonnements global et diffusé. Le facteur d'étalonnage de ce pyrhéliomètre, obtenu par comparaison avec l'étalon à disque d'argent, n'est pas rigoureusement constant, il oscille de 1 % autour de la valeur moyenne. Une telle fluctuation pourrait être imputée à la précision des mesures alors qu'un examen sérieux des différents facteurs d'étalonnage montre qu'il n'en est rien et que cette fluctuation est liée à la présence de brume. Le facteur d'étalonnage obtenu avec brume peut être de 1,9 % inférieur au même facteur obtenu par très beau temps, le facteur d'étalonnage étant exprimé en cal. cm⁻². min⁻¹. par unité de mesure de l'enregistreur.

Cette variation peut être due à deux causes agissant dans le même sens : suppression de la partie ultra-violette du spectre par la brume et par la coupelle de verre qui protège le récepteur du pyrhéliomètre, et l'angle d'ouverture de ce dernier supérieur à l'angle correspondant de l'étalon à disque d'argent. La première cause peut être suspectée, car bien que l'on pense que la brume réduise le rayonnement de courte longueur d'onde [18], aucune évaluation précise ne semble encore avoir été faite, au plus peut-on admettre une influence de quelques millièmes. Les caractéristiques géométriques ont une importance bien plus grande. La *figure* 7 montre les facteurs de pénombre géométrique [17] du pyrhéliomètre à disque d'argent et celui du pyrhéliomètre nº 515 utilisé à Lwiro.

Les dimensions et constantes de normalisation respectives de ces deux appareils sont (fig. 2):

FIG. 7. — Facteurs de pénombre géométrique du pyrhéliomètre à disque d'argent (trait plein) et du pyrhéliographe de Lwiro (tirets).

R = 18,5 mm	a = 1,42	$z^{1} = 0^{0}55'$
r = 13 mm	b = 26,5	$z^2 = 5^{0}13'$
l = 345 mm	$\psi = 0,002864$	

R = 10,15 mm	a = 2,03	$z^{1} = 1029'$
r = 5 mm	b = 40	$z^2 = 4^{o}20'$
l = 200 mm	$\psi = 0,002567$	

En utilisant les données de E. PETTIT [19] sur le rayonnement du disque solaire et celles de F. LINKE et E. ULMITZ recalculées par L. BOSSY et R. PASTIELS [17] pour le rayonnement circumsolaire par beau temps, on en arrive aux courbes d'efficacité du rayonnement du ciel pour les deux pyrhéliomètres considérés (*fig. 8*), telles qu'elles ont été définies par ces deux auteurs. L'intégration de ces courbes montre que le rayonnement du ciel par rapport à celui du soleil est de 1,82 % pour le pyrhéliomètre à disque d'argent et de 1,85 % pour le pyrhéliomètre 515.

La grande différence entre ces nombres et l'écart de 1,9 % cherché ne peut être expliqué par le seul fait que le facteur de pénombre géométrique a été employé plutôt que le facteur effectif de pénombre, la correction correspondante pouvant être évaluée à 0,25 % d'après l'étude de l'actinomètre de Linke Feuszner par L. Bossy et R. PASTIELS. On doit chercher une modification de la relation :

$$Ec = 0,000.479.8 Eo \ 10^{-0,30z}$$

qui n'est plus valable par temps brumeux alors que la diminution du rayonnement du soleil peut être évaluée à 20 % et que le rayonnement du ciel circumsolaire croît. En admettant que la répartition demeure en $10^{-0,30}$ ^z, on peut chercher à modifier le facteur 0,0004798. Le nouveau facteur calculé est voisin de 0,000913, soit environ le double, ce qui conduit à un accroissement du rayonnement du ciel circumsolaire par temps brumeux supérieur de 50 % au même rayonnement par beau temps.

FIG. 8. — Efficacité du rayonnement du ciel pour le pyrhéliomètre à disque d'argent (trait plein) et pour le pyrhéliographe de Lwiro (tirets).

Nos connaissances actuelles sur le rayonnement circumsolaire ne permettant pas de confirmer ce calcul, on retient néanmoins la nécessité d'employer un coefficient d'étalonnage différent quand la brume est présente ou non : un coefficient brume le matin et le soir pour des hauteurs de soleil inférieures, par exemple, à 45° le matin, 30° le soir, et pour des saisons entières à ciel brumeux comme en Afrique centrale.

Ainsi, dans le cas de comparaison entre deux appareils à caractéristiques géométriques différentes, le fait de ne faire des étalonnages que par beau temps permet d'exprimer ce que le pyrhéliomètre reçoit à tout instant et non ce que recevrait l'appareil étalon par temps brumeux. De plus, l'emploi de ces deux appareils en une même station permet de définir si le ciel est clair ou non, condition essentielle pour pouvoir y faire des comparaisons éventuelles entre appareils étalons à caractéristiques différentes.

Quant aux étalonnages des appareils affectés aux rayonnements global et diffusé il se fait, pour l'un en cachant le soleil avec un opercule, pour l'autre en supprimant l'opercule. Pour pouvoir faire le contrôle entre les composantes directe, globale et diffusée, il est indispensable que chaque système récepteur-opercule ait les mêmes caractéristiques que le système correspondant du pyrhéliomètre enregistreur. Ainsi, lorsque ce pyrhéliomètre est utilisé pour étalonner les récepteurs des rayonnements global et diffusé, il faut calculer le rayonnement direct avec le coefficient d'étalonnage *très beau temps* qui est son coefficient propre. Ce dernier peut être connu avec une précision supérieure à 0,5 %.

La précision de l'étalonnage du récepteur du rayonnement global utilisé à Lwiro va de 0,7 % pour les faibles incidences du rayonnement à 1 % et 4 % pour des hauteurs de soleil respectivement de $25 \circ$ et 10° , celle du récepteur du rayonnement diffusé passe de 0,5 % à 1 % et 2 % pour les mêmes hauteurs du soleil. La précision réelle devant tenir compte de celle du pyrhéliomètre enregistreur est de l'ordre de 1 % pour la plus grande partie de la journée.

D. — Contrôle et précision.

L'égalité fondamentale :

rayonnement global G = rayonnement diffusé D + rayonnement direct sur surface horizontale Ih

est vérifiée par demi-heure sous la forme :

$$\Delta = (\mathrm{I}h + \mathrm{D}) - \mathrm{G}$$

égalité réduite à

 $\Delta = D - G$ quand le rayonnement direct est nul.

Systématiquement toute valeur de Δ supérieure à 0,8 calorie amène un contrôle de toutes les valeurs relatives à la demi-heure correspondante. De plus, la somme algébrique de ces Δ pour une journée devant être égale à la valeur ΔJ déduite des valeurs des sommes algébriques journalières de G, D et Ih,

$$\Delta \mathbf{J} = \mathbf{I}h\mathbf{J} + \mathbf{D}\mathbf{J} - \mathbf{G}\mathbf{J}$$

on a là un contrôle de la somme des valeurs demi-horaires de chaque composante. On conçoit qu'avec des valeurs de Δ déjà faibles, on aura une précision d'autant plus grande sur le total de la journée que le nombre des Δ positifs sera proche des Δ négatifs.

Le pourcentage de l'erreur est calculé par demi-heure en fonction du rayonnement global. En effet, Δ représente une différence de deux termes très voisins, la valeur de Δ étant toujours proche de zéro. Ayant ainsi la possibilité de rapporter \varDelta à l'un ou à l'autre terme, on prend G car le plus rapidement utilisable. De même quand le rayonnement direct est nul, on rapporte encore \varDelta à G. Enfin la quantité AJ rapportée à GJ exprime l'erreur sur toute la journée.

Le contrôle opéré par demi-heure permet d'éliminer à peu près toute erreur de calcul et met très nettement en évidence toute faute de dépouillement ou encore une perturbation quelconque dans les enregistrements. La précision de l'ensemble des trois composantes pour septembre 1956 est représentée par demi-heure sur la figure 9 où les valeurs de Δ ont été portées en fonction du rayonnement global. On y voit que moins des trois centièmes des valeurs sont inférieures à 0.8 cal. cm⁻². 1/2 h⁻¹. Des zones de pourcentage y sont aussi délimitées. Il est évident que pour un rayonnement global inférieur au 1/10 environ de sa valeur maximum, ici 5 calories par demi-heure, la notion de pourcentage perd beaucoup de sa valeur. En raison de la précision des systèmes d'enregistrement et d'intégration au-delà de 10 calories par demi-heure, la presque totalité des valeurs représente une erreur inférieure à 2,5 % pour descendre à moins de 1 % par beau temps.

Pour l'ensemble de la journée la précision est nettement meilleure, ce qui est dû au fait que le signe de Δ n'est pas le même pour toutes les demi-heures. La *figure* 10 montre que la valeur extrême est de l'ordre de 2 $\frac{0}{10}$.

Ces résultats peuvent être commentés :

La précision sur le rayonnement direct utilisé pour le contrôle dépend de la précision sur le coefficient réel de l'élément récepteur du pyrhéliomètre, de l'ordre de 0,5 %, et de la précision de l'enregistrement, du même ordre. L'erreur possible sur le rayonnement direct vrai, ou rayonnement que recevrait le pyrhéliomètre étalon au même instant, est plus grande puisque faisant inter-

FIG. 9. — «Valeur absolue de l'erreur par demi-heure sur l'ensemble des 3 composantes du rayonnement en fonction du rayonnement (les croix représentent D - G quand I est nul en septembre 1956).

FIG. 10. — Valeur absolue de l'erreur par journée sur l'ensemble des trois composantes du rayonnement en fonction du rayonnement global, et en pourcentage de ce dernier (septembre 1956).

venir les caractéristiques géométriques des deux appareils, et peut atteindre 1 à 2 %.

La précision sur le rayonnement diffusé ne doit pas être sous-estimée, comme on le fait généralement, car, si en présence de soleil ce ravonnement est le plus faible et le plus difficile à évaluer avec exactitude, lorsque le ravonnement direct est nul le calcul du rayonnement global présente les mêmes difficultés. Or, on voit sur la figure 9 l'écart, pour I nul, entre les valeurs de D obtenues avec les deux appareils totalement différents. Cet écart ne justifie pas la recherche de D avec une précision plus faible que pour les deux autres composantes, à moins que l'on n'utilise que des sommes mensuelles. De plus, on peut facilement évaluer ce que serait l'erreur si tout le rayonnement diffusé, ou seulement la moitié, était concentré à la verticale, même avec un appareil à forte variation de rendement en fonction de l'incidence elle serait de l'ordre de 3,5 % et 1,5 %. Or les valeurs utilisées pour tracer les courbes de la figure 5 montrent que l'émission de la zone comprise entre 60 et 80° de hauteur n'a qu'exceptionnellement atteint 40 % de la valeur totale, ce qui précise la limite de l'erreur, 2,1 % pour l'appareil de Lwiro.

La précision sur le rayonnement global, de par le principe même du calcul de ce dernier, est en partie fonction de celle obtenue sur le rayonnement diffusé, du même ordre quand I est nul, et plus faible dans l'autre cas, de l'ordre de 1 % comme nous l'avons déjà vu. Ainsi que pour D, cette précision donnée pour G est indépendante du système d'enregistrement et nous avons vu quelle précision on pourrait attendre de ce dernier.

Le contrôle met en évidence l'ensemble des erreurs des trois composantes. L'ensemble des réductions peut se représenter par

$$\mathbf{I}\mathbf{h} + \mathbf{D} - [(\mathbf{G}' - \mathbf{D})\mathbf{k} + \mathbf{D}] = \mathbf{\Delta}$$

ce qui se réduit à

$$Ih - (G' - D) k = \Delta$$

où G' représente le rayonnement global enregistré transformé entièrement en rayonnement diffusé, et k le rapport entre le coefficient du récepteur du rayonnement global pour une hauteur de soleil donnée au coefficient du même récepteur correspondant à la hauteur effective.

On devrait avoir $\Delta = 0$, même si les coefficients sont exacts on a des erreurs que l'on peut appeler erreurs accidentelles dues par exemple à la température des appareils, ou la mauvaise orientation du tube de rayonnement direct ou de l'opercule du rayonnement diffusé, ou encore une répartition particulière sur l'hémisphère des zones d'émission du ciel.

On peut essayer de distinguer les erreurs systématiques possibles. Comme l'erreur sur Ih peut être considérée comme très inférieure à celles sur G' et D, la valeur de Δ représente principalement l'erreur sur le groupe (G' — D) autrement dit sur les coefficients « diffusé » des deux appareils. Si une première comparaison de G' et D, lorsque I est nul, permet de connaître la différence existant entre les coefficients, on ne peut avoir là une idée de la précision de chacun d'eux. En effet, les coefficients peuvent être respectivement affectés d'erreurs relatives différentes ou égale et de même signe qui n'apparaît pas quand I est nul.

Bien qu'il soit logique d'exprimer Δ en fonction du rayonnement global, cette représentation n'est pas efficace pour relier G', D et I. En effet, par le fait même que d'une façon générale G' et D varient en sens inverse (décroissance de D pour croissance de G' provoquée par celle de I), il n'est pas possible d'avoir des erreurs sur les coefficients de G' et de D telles que Δ soit proportionnelle à G, alors que la proportionnalité entre Δ et Ih est la conséquence directe de ces erreurs. On peut ainsi mettre en évidence une erreur systématique éventuelle de ces coefficients.

A de rares exceptions près, en particulier si les réductions sont faites avec une décimale ou deux, la valeur de Δ n'est pas nulle. Or il est nécessaire de publier des valeurs de Ih, D et G en accord complet pour en permettre une utilisation rationnelle. Si nous admettons que l'erreur se trouve uniquement dans le groupe (G' - D)k. Δ doit être répartie proportionnellement à ces deux termes dans le cas où aucune erreur systématique n'a pu être décelée, étant inférieure, par exemple, aux erreurs accidentelles. On peut simplifier cette correction en admettant que les rapports G' /D sont de l'ordre de 4 par iournée à fort ravonnement, de 2 pour ravonnement moyen, de 1 pour rayonnement faible. De plus, étant donné que k est peu différente de 1 (variable avec chaque surface réceptrice), on ne fait qu'une très faible erreur en opérant sur G au lieu de G'.

Aux différences techniques près (noircissement, effets thermiques, défaut de *zéro*, variation de rendement avec l'incidence) l'emploi, dans une même station, de plusieurs appareils pour une même composante du rayonnement n'apparait pas justifié. Le contrôle, comme il vient d'être décrit, n'a tout son sens que s'il est fait sur des données obtenues avec des appareils identiques dans leur principe et dans leur technique de construction.

IV. — CONCLUSION

Les résultats donnés au chapitre précédent montrent l'accord qu'il est possible d'obtenir avec des récepteurs d'un seul type, entre les trois composantes habituelles du rayonnement solaire en partant de méthodes non em-

piriques. On peut leur reprocher d'être relatifs et de ne pas exprimer la précision absolue de mesure. Il apparaît cependant que cette dernière semble maintenant bien plus liée au type d'instrument qu'à la méthode d'utilisation. Par suite, on conçoit la nécessité d'opérer avec des appareils du même type, étant, dans le cas contraire, dans l'impossibilité de juger de l'exactitude de chacun.

De grands progrès peuvent être faits dans les méthodes d'observation dont la précision actuelle n'atteint généralement pas celle des appareils utilisés.

BIBLIOGRAPHIE

- 1. H. SCAËTTA, Le climat écologique de la dorsale Congo-Nil (Mémoires de l'Institut Royal Colonial Belge, Bruxelles, 1934).
- 2. E. BERNARD, Le climat écologique de la Cuvette centrale congolaise (Publication de l'Institut national pour l'étude agronomique du Congo Belge, Bruxelles, 1945).
- 3. F. LINKE, Die Bedeutung des Offnungsverhältnisses eines Aktinometers für Messungen der Sonnen und Himmels-strahlung (*Strahlentherapie*, 39, 351, 1931).
- 4. R. DOGNIAUX et R. PASTIELS, Techniques modernes de mesure de l'éclairement énergétique solaire (*Publication 16 de l'Institut Royal Météorologique de Belgique*, Bruxelles, 1955).
- 5. M. NICOLET et R. DOGNIAUX, Ensoleillement et orientation en Belgique, III (Mémoire 40 de l'Institut Royal Météorologique de Belgique, Bruxelles, 1950).
- 6. W. SCHUEPP, Comparaison entre les héliographes Campbell-Stokes et Marvin (Bulletin du Service Météorologique du Congo Belge, 1, Léopoldville, 1951).
- 7. A. VANDENPLAS, La pluie au Congo belge (Mémoire 16 de l'Institut Royal Météorologique de Belgique, Bruxelles, 1943).
- 8. G. BONNET, Sur l'observation de la nébulosité de nuit à Lwiro (Ciel et Terre, Bruxelles, janvier-février 1955).
- 9. K. BUTTNER, Problème und methoden (*Physikalische Bioklimatologie*, Leipzig, 1938).
- 10. L. GORCZYNSKI, Mesures de l'intensité totale et partielle du rayonnement solaire (Annales du Service Botanique, 3, Tunis, 1925).
- 11. M. AITOFF, Sur les variations de la répartition spectrale de l'énergie solaire (Annales de l'Institut de Physique du Globe, 13, Paris, 1935).
- R. FAILLETAZ, La radiation solaire et le trouble atmosphérique à Tamanrasset (Mémorial de l'Office National Météorologique de France, Paris, 1937).
- 13. R. DOGNIAUX et W. VANDENBORRE, Transformation du système de contrôle du frigorimètre de Davos en vue d'assurer une constance

suffisante de la température de la sphère. (Publication 10 de l'Institut Royal Météorologique de Belgique, Bruxelles, 1953).

- 14. C. HENNEBERGER, Tagesgang und Komponenten der Abkühlungsgrösse (Physikalisch-Meteorologischen Observatorium, Davos, 1950)
- 15. K. FEUSSNER, (Meteorologisch Zeitschrift, 50, 1933, 347).
- 16. C. G. ABBOT, (Annals of the Astrophysical Observatory), t. 4, Washington 1922, 262.
- L. Bossy et R. PASTIELS, Étude des propriétés fondamentales des actinomètres (Mémoire 29 de l'Institut Royal Météorologique de Belgique, Bruxelles, 1948).
- T. E. AUREN, Luminous efficiency of solar radiation (Statens Meteorologisk-Hydrografiska Anstalt, Stockholm, 1937).
- 19. E. PETTIT, Limb-darkening on the Sun (Publication Astrophysical Society Pacific, 51, 1939, 321).

DONNÉES SUR LE RAYONNEMENT SOLAIRE ET LA CLIMATOLOGIE À LWIRO EN 1952 et 1953

Pluie (tableau 1 et graphique 1).

Température de l'air sous abri (*tableau* 2 et graphique 2). Insolation : total décadaire et moyenne journalière mensuelle (*tableaux* 4 à 17 et graphique 3).

- Rayonnement : octobre 1952 à décembre 1953 (tableaux 3 à 17 et graphiques 4 et 5). — Les valeurs manquantes ont été remplacées par la moyenne des valeurs restantes dans la décade correspondante et figurent entre parenthèses.
- Récapitulation annuelle et moyenne journalière mensuelle des valeurs du rayonnement et de l'insolation (tableau 18).

P	Т	n	М	Т	n	M	Т	n	М	
	Janvier				Mai			Septembre		
Ι		_	—	18,5	4	7,9	53,4	4	25,0	
II	-		-	36,8	5	9,9	0,2	1	0,2	
111			-	0	0	0	112,2	3	43,5	
1V	-	—	—	3,4	1	3,4	22,7	5	12,2	
V			—	47,5	4	42,4	9,8	3	8,8	
VI			-	7,9	2	4,9	0	0	0	
S			-	114,1	16		198,3	16	1	
	I	février			Juin			Octobr	e	
Ι	8,2	2	6,4	0	0	0	28 7	5	15.2	
II	0	0	0	3.4	2	2.7	8.5	3	4 1	
III	2,6	3	14,6	4,2	1	4.2	29.9	5	22.3	
IV	17,7	3	15,2	21,1	3	15,3	35.0	4	20.5	
v	5,3	3	2,4	30,5	4	14,2	63,8	2	32,0	
VI	2,8	2	2,7	7,3	3	5,1	17,8	6	8,9	
S	36,6	13		66,5	13		183,7	25		
		Mars		Juillet			N	ovemb	ore	
Ι	13.4	4	8.5	30.4	2	25.3	9.5	1	0	
II	13,1	2	6,5	0.9	1	0.9	26	-1 4	1 1	
111	0,3	1	0,3	0	0	0	59.2	4	23.3	
IV	36,5	2	35,2	0	0	0	44,0	5	14,7	
\mathbf{v}	63,6	4	18,8	0	0	0	14,0	2	13,2	
VI	9,3	2	8,6	13,9	1	13,9	41,1	3	40,2	
S	136,2	15		45,2	4		170,4	22		
	А	vril			Août		D	écemb	re	
Ι	7,4	3	2,9	0	0	0	33.6	4	29.2	
11	80,6	5	59,1	0	0	0	5.2	4	3.6	
III	9,5	3	5,0	9,2	1	9,2	14,6	4	14.0	
IV	38,9	4	21,1	4,3	4	2,0	16,2	3	8.8	
v	42,7	5	25,3	0,1	1	0,1	16,1	3	10.7	
VI	69,0	3	24,5	4,3	4	1,4	7,6	2	6,7	
S	248,1	23		17,8	10		93,3	20	<u>. </u>	

TABLEAU 1. – La pluie à Lwiro en 1953.

Symboles :

P = pentade;

T = hauteur de l'eau recueillie (en mm);

n = nombre de journées de pluie ;

M = maximum recueilli en une journée (de 09 h la veille à 09 h le jour de la mesure, en temps local).

TABLEAU 2. — La température de l'air sous abri à Lwiroen 1953.

Р	Tm	М	m	Tm	М	m	Tm	M	m	
	Janvier				Mai			Septembre		
T	15.5	27.9	10.9	17.6	24.4	12.1	16.3	23.2	12.6	
II I	16.9	28.5	12.3	17.5	24.2	13.1	17.7	28.5	11.8	
III	16,1	27,6	11,9	17,6	24,7	11,6	18,2	29,4	13,2	
IV	16,5	29,1	12,3	16,9	25,7	12,7	17,1	26,2	12,0	
v	16,3	28,8	12,0	17,9	25,6	12,6	17,2	27,0	11,1	
VI	16,1	27,9	12,5	16,9	24,9	11,4	17,6	29,0	9,2	
		Février			Juin		(Octobre	e	
т	16-1	28.2	11.5	17.2	24.6	11.7	17.7	26.2	12.6	
11	17.3	30.4	12,9	16,9	23.0	12,2	18,3	26,9	13,0	
111	17.6	29.5	11,0	17,4	23,9	11,3	16,3	25,8	11,2	
IV	18,1	29,0	14,8	17,3	24,9	13,5	17,3	26,1	12,0	
v	17.5	28.4	11.7	16.8	23,4	12,4	18,0	27,4	13,1	
VI	17,8	29,3	11,8	17,1	23,2	11,9				
		Mars			Juillet		N	ovemb	re	
I	17.3	30.1	11.3	16.2	23.4	10.4	17.2	26,6	10,8	
II	17,2	27,6	12,0	16,2	24,2	9,3	17,5	26,9	11,1	
III	16,9	28,4	11,7	16,4	23,6	10,6	17,4	27,1	12,3	
IV	14,4	29,8	10,5	15,6	24,0	7,8	17,2	26,6	12,4	
v	16,9	27,3	11,5	15,2	25,2	6,8	17,3	26,8	11,2	
VI	18,6	27,2	12,6	17,6	26,1	10,8	17,7	26,2	13,0	
		Avril			Août		L I)écemb	re	
I	18.1	27.2	12.5	17.7	25,9	10,9	16,2	26,8	11,6	
л П	18,1	25.9	12.5	18.0	25.2	10,5	18,4	27,5	12,9	
TH I	18.6	26.3	12.2	18.2	26.9	9.8	17,9	27,5	12,5	
IV	18.0	26.0	12.1	18.3	27.1	12.2	17.6	26,7	13,1	
v	17.3	24.3	11.7	18.4	27.3	11.0	18.2	27,1	11,3	
VI	17,8	25,6	13,3	18,3	27,2	12,7	18,1	27,6	11,3	

DATE		Direc cal. cm	t -2	1	Globa /10 cal.	l cm ⁻²	Dure d'insola	e tion
	a. m.	p. m.	jour	a. m.	p. m.	jour	H. min.	R.
1	180	163	343	3146	2964	6110		
2	349	142	491	3160	2582	5742	li l	
3	53	96	149	1874	1752	3626		
4	175	86	261	2473	1713	4186		
5	236	15	251	3213	1551	4764		
6	44	119	162	1888	2501	4389		
7	152	220	372	2481	3166	5647		
8	255	301	356	3385	3189	6574		
9	203	224	427	2683	2715	5398		
10	212	244	456	2324	3153	5477		
1 ^{re} déc.	1859	1605	3464	26627	25286	51913		
11.	90	434	524	2967	2024	4991		
12	369	160	529	2725	2058	4783		
13	-307	68	-375	4601	3484	8085		
14	139	114	253	3044	2538	5582		
15	128	154	282	2497	2388	4885	[
16	240	199	439	2693	2840	5533		
17	297	84	381	2737	1574	4311		
18	157	58	215	(2881)	(2259)	(5140)		
19	104	55	159	2148	1632	3780		
20	131	116	247	2524	1800	4324		
2º déc.	1961	1441	3402	(28817)	(22597)	(51414)		
21	170	48	218	3445	2325	5770		
22	260	203	463	3393	2729	6122		
23	193	78	271	3163	1891	5054		
24	244	8	252	796	1034	1830		
25	149	57	207	3403	1813	5216		
26	146	28	174	3215	1832	5047		
27	40	32	72	2388	1980	4368		
28	55	93	148	1927	2069	3996		
29	2	64	66	1393	2305	3698		
30	24	19	43	1644	916	2560		
31	17	155	172	1539	3330	4869		
3 ^e déc.	1298	786	2085	26306	22224	48530		
Mois	5118	3832	8950	(81750)	(70107)	(151857)		

TABLEAU 3. — Le Rayonnement solaire à Lwiro. Octobre 1952.

Date		Direct cal. cm	-2	$ \begin{array}{c} \text{Global} \\ 1 / 10 \text{ cal. cm}^{-2} \end{array} $			Duré d'insola	e tion
	a. m.	p. m.	jour	a. m.	p. m.	jour	H. min.	R.
1	163	186	349	1894	2668	4562	6 15	
2	49	88	137	3356	2026	5382	4 15	
3	116	42	158	1894	1579	3473	4.28	
4	113	34	147	2255	1741	3996	5.00	
5	338	59	397	4961	2113	7074	8.21	
6	336	261	597	4856	3 520	8376	9.38	
7	210	290	500	2432	3021	5453	9.36	
8	176	240	416	2106	2731	4837	7.31	
9	141	175	316	1273	2549	3822	7.45	
10	179	101	280	2131	2062	4193	8.09	
1 ^{re} déc.	1823	1475	3298	27158	24010	51168	71.00	
11	94	59	153	2139	1161	3300	5.26	
12	60	124	184	1689	-2016	3705	5.27	
13	10	92	102	(2067)	(1890)	(3957)	5.28	
14	133	20	153	2270	1670	3940	7.14	
15	173	214	387	2634	3093	5727	9.11	
16	.94	169	263	3863	2615	6478	6.02	
17	222	73	295	2789	2151	4940	6.31	
18	13	31	44	925	1349	2274	1.42	
19	11	6	17	8,44	996	1840	1.14	
20	52	94	146	1455	1964	3419	4.51	
2 ^e déc.	861	882	1743	(20675)	(18905)	(39580)	53.07	
21	94	72	166	3354	2619	5973	6.23	
22	117	171	288	2884	731	3615	6.42	
23	65	138	203	1202	2640	3842	4.14	
24	235	183	418	1126	3888	5014	9.20	
25	261	.96	357	3599	2604	6203	6.30	
26	121	87	208	3221	2655	5876	7.52	
27	363	204	567	1370	278	1648	8.55	
28	301	20	321	3898	1039	4937	6.27	
29	101	60	161	3219	1344	4563	6.43	
30	190	0	190	3372	565	3937	4.49	
3 ^e déc.	1848	1031	2879	27245	18363	45608	67.55	
Mois	4532	3388	7920	(75078)	(61278)	(136356)	192.02	

TABLEAU 4. — Le rayonnement solaire à Lwiro. Novembre 1952.

DATE		Direct cal. cm ⁻	-2	1	Globa 10 cal. c	l 2 m ⁻²	Durée d'insolation	
DATE	a.m.	p.m.	jour	a.m.	p.m.	jour	H. min.	R.
1	91	65	156	1578	1545	3123	4.28	
2	109	11	120	1304	1108	2412	4.25	
3	25	174	199	1619	3147	4766	4.02	
4	110	195	305	2344	3127	5471	7.06	
5	18	250	268	1582	3803	5385	4.37	
6	145	309	454	2464	2926	5390	8.50	
7	411	291	702	3079	2582	5661	11.23	
8	366	143	509	2801	2439	5240	9.43	
9	343	189	532	2675	1861	4536	9.24	
10	370	107	477	2830	1757	4587	10.18	
1 ^{re} déc.	1987	1733	3720	22276	24295	46571	74.18	
11	369	148	517	2804	2138	4942	9.48	
12	224	139	363	2800	1809	4609	10.45	
13	80	86	166	2119	2605	4724	8.35	
14	61	46	107	1480	1930	3410	3.58	
15	96	168	264	2567	2579	5146	8.51	
16	83	159	242	1789	2919	4708	9.32	
17	304	136	440	2743	1472	4215	10.16	
18	79	125	204	1491	2068	3559	7.27	
19	240	266	506	2754	2444	5198	10.58	
20	201	163	364	2298	1987	4285	8.52	
2 ^e déc.	1738	1487	3225	22845	21951	44796	89.02	
21	151	112	263	2032	1640	3672	8.25	
22	348	158	506	2762	1692	4454	9.22	
23	361	194	555	2693	1839	4532	10.06	
24	225	125	350	2387	1553	3940	8.17	
25	185	20	205	2249	842	3091	7.11	
26	107	68	175	1983	1362	3345	5.04	
27	21	0	21	592	3340	3932	0.48	
28	318	70	388	2930	1510	4440	8.27	
29	40	76	116	1736	1379	3115	4.15	
30	81	217	298	1963	2325	4288	7.00	
31	8	10	18	947	1163	2110	1.49	
3º déc.	2100	1051	3151	22274	18645	40919	70.44	
Mois	5825	4271	10096	67395	64891	132286	234.04	

TABLEAU 5. — Le rayonnement solaire à Lwiro. Décembre 1952.

DATE		Direct cal. cn	1-2	1/10	Globa	al 1 ⁻²	Durée d'in- solation	
DALE			iour				TT	
	a.m.	p.m.	jour	a.m	p. m.	Jour	H. min.	R.
1	161	320	481	1466	1276	2742	2.00	
2	642	796	1438	1976	2460	4436	3.20	
3	452	- 10	452	2152	763	2915	2.19	
4	1108	460	1568	3141	2367	5508	4.49	
5	3658	3364	7022	3809	4004	7813	11.29	
6	1620	1763	3383	2444	2621	4865	6.11	
7	3450	2135	5585	3092	1776	4868	9.04	
8	3736	1973	5709	3376	3407	6783	9.48	
9	2535	2166	4701	(2610)	(2350)	(4960)	8.25	
10	905	762	1667	2057	2465	4522	5.49	
1 ^{re} déc.	18267	13739	32006	(26123)	(23489)	(49612)	63.13	
11	1953	346	2299	2546	1588	4134	6.56	
12	0	520	520	808	1677	2485	2.40	
13	1760	2236	3996	2614	3024	5638	10.52	
14	879	367	1246	2230	1771	4001	6.56	
15	2720	1877	4597	2826	2775	5601	9.30	
16	1160	1048	2208	2230	2212	4442	8.42	
17	793	2158	2951	1982	2928	4910	8.26	
18	3476	3034	6510	3012	3129	6141	11.15	
19	1784	3653	5437	2298	2954	5252	9.25	
20	2109	2155	4264	2428	2206	4634	11.11	
2 ^e déc.	16634	18394	35028	22974	24264	47238	85.52	
21	1720	3045	4765	2469	3487	5956	10.28	
22	3177	2863	6040	2815	374	3189	9.43	
23	2616	790	3406	(2710)	(2313)	(5023)	8.13	
24	3713	754	4467	3516	1968	5474	7.41	
25	2993	2545	5538	3110	3410	6520	10.49	
26	1841	1308	3149	2848	2106	4954	6.15	
27	1362	762	2124	1872	2952	4824	6.04	
28	720	359	1079	2142	1487	3629	4.55	
29	1154	2727	3881	2391	3535	5926	5.48	
30	1368	42	1410	2717	1063	3780	5.20	
31	3110	1386	4496	3250	2748	5998	9.51	
3º déc.	23774	17581	41355	(29840)	(25443)	(55283)	85.07	
Mois	58675	49714	108389	(78937)	(73196)	(152133)	234.12	

TABLEAU6. — Le rayonnement solaire à Lwiro.Janvier 1953.

TABLEAU 7. — Le rayonnement solaire à Lwiro. Février 1953.

Date	Direct cal. cm ⁻²			1	Global /10 cal.	cm ⁻²	Durée d'insolation	
	a . m.	p. m.	jour	a. m.	p. m.	jour	H. min.	R .
1	1233	2603	3836	2739	2943	5682	8.56	_
2	3056	2347	5403	2557	2875	5432	10.57	
3	279	93	372	1780	616	2396	3.51	
4	2201	1285	3486	2884	2706	5590	9:48	
5	3146	1049	4195	3479	2354	5833	10.45	
6	2973	2554	5527	3463	2867	6330	11.03	
7	2771	1696	4467	3388	2338	5726	10.37	
8	1422	816	2238	2109	1412	3521	6.43	
9	3204	1052	4256	3504	2374	5878	9.59	
10	3124	1380	4504	3372	2139	5511	8.23	
1 ^{re} déc.	23409	14875	38284	29274	22623	51897	91.02	
11	1878	1704	3582	2816	2431	5247	7.59	
12	1862	707	2569	2626	1356	3982	6.36	
13	3445	1575	5020	3253	2167	5420	8.54	
14	1608	554	2162	3184	1594	4778	7.04	
15	932	798	1730	2180	1750	3930	6.51	
16	938	158	1096	2231	1016	3247	2.37	
17	1062	132	1194	2557	587	3144	4.08	
18	443	583	1026	1570	1588	3158	4.03	
19	8	1052	1060	492	2431	2923	3.21	
20	179	1818	1997	1356	2434	3790	3.58	
2º déc.	12355	9081	21436	22266	17354	39620	55.32	
21	(2060)	1238	(3 2 98)	2422	2741	5163	6.59	
22	3846	1725	5571	3236	2707	5943	8.29	
23	2041	526	2567	2769	1912	4681	7.09	
24	26	249	275	1239	1726	2965	1.05	
25	316	697	1013	1843	2577	4420	4.08	
26	2134	1342	3476	2693	2422	5115	6.02	
27	3442	1090	4532	3259	1975	5234	7.21	
28	2590	1492	4082	2977	2875	5852	7.52	
3º déc.	(16455)	8359	(24814)	20438	18935	39373	49.05	
Mois	(52219)	32315	(84534)	71978	58912	130890	195.38	

Date		Direct cal. cm	-2	1/	Globa 10 cal. c	l m ⁻²	Durée d'insolation	
	a.m.	p. m.	jour	a. m.	p.m.	jour	H. min.	R.
1	197	2	199	1609	917	2526	1.38	
2	2608	98	2706	2738	1205	3943	5.26	
3	3098	1862	4960	3057	2715	5772	8.26	
4	1886	932	2818	(2110)	2325	(3435)	6.15	
5	218	0	218	(2110)	746	(2856)	0,46	
6	212	448	660	1183	1630	2813	3.20	
7	2334	1759	4093	2916	2786	5702	8.53	
8	2093	790	2883	2399	1975	4374	7.24	
9	443	60	503	1611	674	2285	1.58	
10	267	60	327	1389	1111	2500	2.33	
1 ^{re} déc.	13356	6011	19367	(21122)	16084	(37206)	46.40	
	1660	122	1782	2734	659	3393	5.19	
12	808	813	1621	1815	1457	3272	4.40	
13	122	2031	2153	1071	2740	3811	4.43	
14	1595	2201	3796	2106	3329	5435	9.42	
15	2942	2984	5926	3293	3191	6484	11.11	
16	1699	370	2069	2793	1561	4354	6.21	
17	2367	730	3097	2874	2497	5371	7.25	ļ
18	(1510)	0	(1510)	2106	220	2326	3.24	
19	0 Ó	246	246	291	867	1158	0.59	1
20	2367	1955	4322	2316	2509	4825	8.51	
2º déc.	(15070)	11452	(26522)	21399	19030	40429	62.36	
21	2194	1529	3723	2470	2285	4755	7.15	
22	29	16	45	801	979	1780	0.40	
23	281	0	281	(2410)	(2534)	(4944)	1.24	
24	2122	2020	4142	(2410)	2926	(2410)	8.48	
25	4581	3788	8369	3294	3241	6535	11.09	
26	3762	-3414	7176	3408	3229	6637	10.07	
27	3481	3245	6726	-3134	2891	6025	9.54	
28	1253	450	1703	1647	1527	3174	4.57	
29	304	2192	2496	1750	2949	4699	5.16	
30	3188	3632	6820	3054	3252	6306	10.45	
31	1214	1206	2420	2173	2063	4236	6.49	
3º déc.	22409	21492	43901	(26551)	(27876)	(54427)	77.04	
Mois	(50835)	38955	(89790)	(69072)	(62990)	(132062)	186.19	

TABLEAU 8. — Le rayonnement solaire à Lwiro. Mars 1953.

TABLEAU 9. — Le rayonnement solaire à Lwiro. Avril 1953.

Date		Direct cal. cm ⁻	-2	1	Global /10 cal. c	m ⁻²	Durée d'insolation		
	a. m.	p. m.	jour	a. m.	p. m.	jour	H. min.	R.	
1	1476	282	1758	2049	1354	3403	4.43		
2	2365	192	2557	2176	1305	3481	5.10		
3	730	161	891	2397	973	3370	3.33		
4	1238	1689	2927	3666	2762	6428	6.43		
5	515	1160	1675	2180	2366	4546	5.52		
6	660	461	1121	2663	1287	3950	3.46		
7	1544	243	1787	3126	2077	5203	6.54		
8	2020	127	2147	2728	1074	3802	4.03		
9	549	2044	2593	2369	2977	5346	6.54		
10	129	1370	1499	2807	2552	5359	3.26		
1 ^{re} déc.	11226	7729	18955	26161	18727	44888	51.04		
11	2862	2189	5051	3135	2577	5712	7.47		
12	2580	401	2981	3105	1617	4722	5.44		
13	1077	111	1188	2397	1037	3434	4.06		
14	262	858	1120	1746	2049	3795	3.27		
15	3807	1694	5501	3353	2978	6331	11.07		
16	4046	3421	7467	3208	3281	6489	10.29		
17	2380	1557	3937	3318	2507	5825	9.44		
18	720	47	767	1538	1265	2803	2.18		
19	3092	3458	6550	3318	3161	6479	8.39		
20	1590	254	1844	2570	1463	4033	4.54		
2º déc.	22416	13990	36406	27688	21935	49623	68.15		
21	5	223	228	930	1567	2497	1.03		
22	1370	1844	3214	2431	2482	4913	6.45		
23	1456	142	1598	2939	839	3778	4.16		
24	168	96	264	930	793	1723	1.08		
25	(864)	(812)	(1676)	2745	2959	5704	9.37		
26	399	1220	1619	1644	2084	3728	6.17		
27	919	1380	2299	2159	2167	4326	6.55		
28	971	1085	2056	1912	2084	3996	5.04		
29	1658	541	2199	2888	1555	4443	5.38		
30	824	777	1601	1701	1707	3408	3.32		
3 ^e déc.	(8634)	(8120)	(16754)	20279	18237	38516	50.15		
Mois	(42276)	(29899)	(72115)	74128	58899	133027	169.34		

Date	1	Direc /10 cal.	t cm ⁻²	1	Globa /10 cal.	l cm ⁻²	Durée d'insolation	
	a.m.	p.m.	jour	a.m.	p.m.	jour	H. min.	R.
1	1049	591	1640	2631	1940	4571	6.42	
2	2186	435	2621	2552	1457	4009	4.59	
3	1432	1323	2755	2036	(1590)	(3626)	5.06	
4	1075	5	1080	(1300)	603	(1903)	2.06	
5	1981	2341	4322	2569	2482	5051	9.00	
6	502	1680	2182	1954	2333	4287	7.06	
7	249	130	379	1607	1002	2609	2.24	
8	5	308	313	869	1287	2156	1.09	
9	401	552	953	1534	1457	2991	3.18	
10	8	565	573	398	1746	2144	2.07	
1 ^{re} déc.	8888	7930	16818	(17950)	(15897)	(33847)	43.57	
11	2611	912	3523	2709	1685	4394	7.36	
12	3126	3859	6985	2933	3204	6137	10.22	
.13	2458	3033	5491	2754	3004	5758	10.07	
14	1841	2399	4240	2466	2754	5220	9.09	
15	1018	857	1875	2091	2174	4265	6.03	
16	1570	2295	3865	2412	2816	5228	8.30	
17	1414	3074	4488	2243	2719	4962	8.18	
18	1629	3346	4975	2639	2852	5491	9.21	
19	3958	3440	7398	3244	2952	6196	9.21	
2 0	689	1375	2064	1764	2125	2889	8.06	
2º déc	20314	24590	44904	25255	26285	51540	86.53	
21	1347	855	2202	1900	1354	3254	5.35	
22	2126	704	2830	2709	1718	4427	7.24	
23	3574	1813	5387	2968	2692	5660	9.27	
24	303	956	1259	1041	2008	3049	3.03	
25	1134	1878	3012	1840	2639	4479	7.03	
26	1924	272	2196	2077	1180	3257	5.11	
27	453	3041	3494	1640	2834	4474	6.50	
28	1805	2344	4149	2709	2326	5035	7.00	
29	772	1329	2101	2091	1969	4060	6.18	
30	3862	2479	6341	2869	2630	5499	9.52	
31	1103	4400	5503	2185	2959	5144	7.30	
3 ^e déc.	18403	20071	38474	24029	24309	48338	75.14	
Mois	47605	52591	100196	(67234)	(66491)	(133725)	206.04	

TABLEAU 10. – Le rayonnement solaire à Lwiro. Mai 1953.

TABLEAU 11. — Le rayonnement solaire à Lwiro. Juin 1953.

DATE	1	Direct /10 cal. c	m ⁻²	1	Global /10 cal. c	cm−²	Duré d'insola	e tion
	a. m.	p. m.	jour	a. m.	p, m,	jour	H. min.	R.
1	13	2186	2199	1282	2431	3713	5.00	
2	816	3204	4020	1679	2674	4353	8.35	
3	2606	2303	4909	2509	2666	5175	8.49	
4	3561	3336	6897	2978	2852	5830	10.10	
5	2315	119	2434	(1890)	(1950)	(3840)	5.51	
6	3	233	236	(1890)	1106	(2996)	0.55	
7	549	1059	1608	1424	1968	3392	5.00	
8	844	515	1359	1786	1320	3106	4.00	
9	1059	805	1864	2049	1528	3577	5.04	
10	546	376	922	1419	1005	2424	2.12	
1 ^{re} déc.	12312	14136	26448	(18906)	(19500)	(38406)	55.37	
11	681	1222	1903	2091	2070	4161	6.00	
12	1077	1515	2592	1792	2091	3883	6.48	
13	1608	715	2323	2320	1646	3966	7.09	
14	363	197	560	(1460)	(1520)	(2980)	1.49	
15	679	186	865	(1460)	1114	(2574)	3.04	
16	8	158	166	410	1143	1553	1.01	
17	0	114	114	342	500	842	0.30	
18	3	673	676	834	1819	2653	2.46	
19	894	987	1881	1826	1786	.3612	5.49	
20	919	728	1647	2056	1540	3596	4.57	
2 ^e déc.	6232	6495	12727	(14591)	(15229)	(29820)	39.51	
21	282	414	696	1349	1634	2983	2.19	
22	13	562	575	761	1274	2035	1.24	
23	(525)	717	(1242)	2311	1316	3627	6.11	
24	192	394	586	1066	1138	2204	2.20	
25	365	220	585	1780	802	2582	3.35	
26	324	311	635	1320	1078	2398	2.22	
27	(525)	(865)	(1390)	405	1381	1786	0.38	
28	(525)	3165	(3690)	1495	2834	4329	6.26	
29	383	790	1173	2008	1786	3795	5.00	
30	2119	1204	3323	2354	1900	4254	9.31	
3º déc.	(5253)	(8642)	(13895)	14849	15143	29992	39.46	
Mois	(23797)	(29273)	(53070)	$\ (48346)$	(49872)	(98218)	135.14	

Date	1	Direct /10 cal. c	t. m ⁻²	1	Global /10 cal. d	cm-2	Dur d'insola	ée ation
	a. m.	p. m.	jour	a. m.	p. m.	jour	H. min.	R.
1	1265	1628	2884	1826	2201	4027	8.13	
2	1913	1458	3371	2242	2208	4450	7.08	
3	1022	802	1824	1773	1282	3055	5.24	
.4	1195	627	1822	1634	1634	3268	5.46	
5	939	1354	2293	1847	1746	3593	6.52	
6	1703	1290	2993	2193	1700	3893	9.00	
7	2956	2324	2580	2674	2354	5028	10.31	
8	2963	2388	5351	2630	2552	5182	10.59	
9	1238	992	2230	1786	1786	3572	5.55	
10	1729	874	2603	2320	1818	4138	5.49	
1 ^{re} déc.	16914	13737	30651	20925	19281	40206	75.36	67.6
11	1433	1471	2904	2084	1534	3618	8.26	
12	1725	534	2259	1934	2125	4059	5.48	
13	1831	867	2698	2193	2084	4277	8.22	
14	142	934	1076	1175	1640	2815	3.33	
15	728	746	1474	1634	1452	3086	4.01	
16	3127	3020	6147	2709	2834	5543	11.08	
17	1942	2230	4172	2466	2466	4932	9.02	
18	3082	2107	5189	2675	2798	5473	9.45	
19	3029	1860	4889	2458	2159	4617	10.27	
20	1019	3395	4414	2458	2905	5363	10.32	
2 ^e déc.	18058	17164	35222	21786	21997	43783	81.05	72.4
21	3457	3324	6781	2824	2666	5490	10.19	
22	3220	.3470	6690	2578	2930	5508	11.12	l
23	3015	2933	5948	2474	2878	5352	11.06	1
24	2933	2931	5864	2719	2878	5597	11.05	
25	2534	2590	5124	2577	2762	5339	11.05	
26	2748	2414	5162	2525	2692	5217	10.06	ļ
27	2534	2134	4668	2362	1947	4309	10.04	
28	2343	1618	3961	2362	2362	4724	9.17	
29	2326	1482	3808	2499	2349	4848	8.58	
30	1372	181	1553	1819	767	2586	5.24	
31	1353	1135	2488	1975	1975	3950	7.19	
3 ^e déc.	27835	24212	52047	26714	26206	52920	105.56	86.0
Mois	62807	55113	117920	69425	67484	136909	262.37	75.7

TABLEAU 12. — Le rayonnement solaire à Lwiro. Juillet 1953.

Date	1	Direc /10 cal.	t cm ⁻²	1	Global /10 cal.	cm ^{−2}	Duro d'insola	ée ation
	a.m.	p.m.	jour	a.m.	p.m.	jour	H. min.	R.
1	57	0	57	1088	463	1551	0.18	1
2	673	1315	1988	1623	2170	3793	5.37	
3	2064	1875	3939	2341	2202	4543	9.53	
4	2004	1514	3518	2522	2153	4675	9.43	İ
5	2170	1878	4048	2530	2399	4929	9.59	
6	2162	1290	3452	2440	2054	4494	9.39	
7	1800	795	2595	2140	1839	3979	7.01	
8	1092	813	1905	2189	1584	3773	5.41	
9	1631	1348	2979	1891	1914	3805	8.14	
10	1820	975	2795	2077	1564	3641	7.40	
1 ^{re} déc.	15473	11803	27276	20841	18342	39183	73.46	65.8
11	988	2748	3736	2415	3094	5509	6.37	
12	2559	2714	5273	2896	3096	5992	10.57	
13	2570	2696	5266	3039	3240	6279	10.34	
14	1169	836	2005	2432	1886	4318	4.41	
15	31	147	178	1268	1352	2620	1.18	
16	3	126	129	1146	1143	2289	0.51	
17	488	975	1463	1002	1789	2791	3.45	
18	364	906	1270	1724	1891	3615	4.52	
19	1540	818	2358	2900	1725	4625	6.29	
20	838	1081	1919	2381	2198	4579	5.40	
2º déc.	10550	13047	23597	21203	21414	42617	55.44	49.6
21	377	769	1146	1583	1781	3364	6.28	
22	475	614	1089	1980	2031	4011	4.46	
23	3604	2740	6344	3124	2703	5827	9.59	
24	1976	826	2802	2521	1999	4520	7.48	
25	1852	10	1862	2539	628	3167	4.26]
26	361	335	696	1802	1296	3098	3.48	
27	2428	586	3014	2842	1427	4269	7.32	
28	2183	738	2921	2740	1575	4315	5.04	
29	1889	31	1920	2457	917	3374	4.22	
30	46	382	428	1423	1467	2890	1.39	
31	3	137	140	684	1063	1747	0.51	
3º déc.	15194	7168	22362	23695	16887	40582	56.41	46.0
Mois	41217	32018	73235	65739	56643	122382	186.11	53.6

TABLEAU 13. — Le rayonnement solaire à Lwiro. Août 1953.

Date	1,	Direct 10 cal. c	m ⁻²	1	Global /10 cal. c	ca-2	Duré d'insola	e tion
	a. m.	p. m.	jour	a. m.	p. m.	jour	H. m.	R.
1	161	583	744	1210	1153	2363	1.38	
2	0	272	272	613	1317	1930	1.05	
3	0	1049	1049	589	2223	2812	3.01	
4	52	272	324	1154	1456	2610	3.00	
5	0	119	119	629	1363	1592	1.54	
6	88	174	262	1213	1197	2410	1.14	
7	344	241	585	1656	1362	3018	2.46	
8	2189	1989	4178	3055	2516	5571	8.05	
9	982	1782	2764	2282	2548	4830	7.52	
10-	3460	3634	7094	3357	3079	6436	10.17	
1 ^{re} déc.	7276	10115	17391	15758	18214	33972	40.52	36.4
11	3403	2520	5923	3306	3197	6503	9.32	
12	1795	391	2186	2732	1682	4414	5.10	
13	622	251	873	2248	737	2985	2.40	
14	420	31	451	1778	957	2735	1.06	
15	23	653	676	1312	1903	3215	1.33	
16	409	904	1313	1696	2126	3822	3.46	
17	3256	1075	4331	3476	2242	5718	6.49	
18	580	995	1575	1961	2203	4164	4.42	1
19	1323	370	1693	2711	1715	4426	4.05	
20	453	383	836	2233	1487	3720	2.27	
2 ^e déc.	12284	7573	19857	23453	18249	41702	41.50	37.2
21	2243	2606	4849	2675	2763	5438	8.24	ł
22	3950	824	4774	3201	1476	4677	7.55	
23	3468	3175	6643	3145	3311	6456	9.35	
24	1085	1124	2209	2355	2513	4868	6.32	
25	3784	3704	7488	3190	3358	6548	11.18	
26	4250	4147	8397	3354	3484	6838	11.18	
.27	4525	4185	8710	3291	3419	6710	11.18	
28	3525	2818	6343	3007	3107	6114	9.14	
29	3165	1246	4411	3034	1998	5032	8.06	
.30	3699	793	4492	3071	1833	4904	7.06	
3º déc.	33694	24622	58316	30323	27262	57585	90.46	80.4
Mois	53254	42310	95564	69534	63725	133259	173.28	51.5

TABLEAU 14. — Le rayonnement solaire à Lwiro. Septembre 1953.

Date	1	Direct /10 cal.	cm-2	1	Globa /10 cal.	l cm ⁻²	Dur d'insol	ée ation
	a.m.	p.m.	jour	a.m.	p.m.	jour	H. min	R.
1	482	488	970	1977	1240	3217	0.17	
2	919	380	1399	2574	1338	3912	5.54	
3	887	1422	2309	2279	2245	4524	5.27	
4	877	31	908	2437	582	3019	4.31	
5	2258	1422	3680	3434	2292	5726	9.13	
6	979	1830	2809	2973	2634	5607	6.55	
7	598	1832	2430	3715	2934	6649	9.13	
8	2926	2649	5575	3576	2904	6480	10.37	
9	2983	2738	5721	3490	3180	6670	10.07	
10	2558	1237	3795	2892	2202	5094	8.21	
1 ^{re} déc.	15467	14129	29596	29347	21551	50898	70.34	62.1
11	. 1673	660	2333	2853	1921	4774	7.15	
12	0	579	579	1272	2230	3502	2.13	
13	3281	183	3464	1332	1270	2602	1.36	
14	2038	2751	4789	3015	3215	6230	7.28	
15	0	26	26	691	1302	1993	0.00	
16	,1235	885	2120	2363	2952	5315	6.55	
17	1720	2143	3863	3065	3096	6161	9.05	
18	1757	877	2634	2871	2538	5409	9.10	
19	462	418	880	2310	1989	4299	4.24	
2 0	279	1028	1307	1875	2094	3969	3.38	
2º déc.	12445	9550	21995	21647	22607	44254	51.45	45.6
21	1707	1527	3234	2552	2079	4631	9.21	
22	616	535	1151	1442	2247	3689	2.55	
23	3260	2579	5839	3536	3158	6694	9.00	
24	945	825	1770	2492	1992	4484	6.11	
25	2302	2284	4586	3053	2827	5880	8.13	
26	415	1811	2226	2120	2738	4858	6.56	
27	2010	1104	3114	2583	2300	4883	6.42	
28	2761	619	3380	3359	1921	5280	6.20	
29	1757	639	2396	2914	1448	4362	5.09	
30	1579	117	1696	2995	1366	4361	3.49	
31	705	1887	2582	1881	2452	4333	2.49	
3º déc.	18057	13827	31984	28927	24528	53455	67.26	54.1
Mois	45969	37606	83575	79921	68686	148607	189.45	54.0

TABLEAU 15. — Le rayonnement solaire à Lwiro. Octobre 1953.

Date	1/	Direct 10 cal. cm	-3	1/	Global 10 cal. cn	1-2	1/1	Diffusé '10 cal. cm	-3	Du d'inso	rée lation
	a. m.	p. m.	jour	a. m.	р. т.	jour	a. m.	р. т.	jour	H. min.	.К.
1	1490	517	2007	2256	1580	3836	1379	1109	2488	4.28	
2	3244	1472	4716	3136	2608	5744	944	1087	2031	9.08	
ŝ	778	410	1188	2393	1645	4038	1653	1509	3162	4.22	
4	2169	84	2253	2903	1412	4315	1292	1344	2636	4.26	
5	2171	2692	4863	2663	3035	5698	1244	887	2131	10.02	
9	3466	1047	4513	3161	2325	5486	722	1070	1792	7.19	
7	1049	2691	3740	2515	3078	5593	1457	766	2223	7.19	
8	1631	820	2451	2650	1773	4423	1488	966	2484	4.17	
6	669	1255	1954	2300	2309	4609	1757	1266	3023	5.01	
10	752	1156	1908	2548	2272	4820	1962	1074	3036	5.37	
1re déc.	17449	12144	29593	26525	22037	48562	13898	11108	25006	61.59	54.1
11	2900	2482	5382	3320	3236	6556	1422	918	2340	9.51	
12	2419	1242	3661	2879	2162	5041	1257	1018	2275	8.14	
13	191	298	489	1486	1346	2832	1379	1114	2493	1.22	
14	269	1088	1357	2028	2105	4133	1810	1140	2950	3.11	
15	167	1806	1973	1903	2653	4556	1649	1509	3158	4.01	
16	78	2130	2208	1311	2820	4131	1283	1205	2488	5.05	
17	2372	368	2740	3007	1730	4737	1109	1396	2505	3.23	
18	40	616	686	1653	2242	3895	1636	1962	3598	2.03	

TABLEAU 16. Le rayonnement solaire à Lwiro. Novembre 1953.

à lwiro en 1953

	45.9											42.8	47.6
6.09 9.22	52.42	5.00	8.16	6.28	4.43	2.09	5.29	8.46	3.17	2.35	2.39	49.22	164.04
2771	25713	3058	1501	3280	2218	2606	3406	2731	3311	3032	3050	28193	78912
1357 596	12215	1344	596	1666	787	1244	1744	1470	1362	1344	1327	12884	36207
1414 539	13498	1714	905	1614	1431	1362	1662	1261	1949	1688	1723	15309	42705
4473 6374	46728	4614	5652	4524	5096	2931	4207	5775	4255	3693	4045	44793	140083
1697 2914	22905	2281	2713	2311	2697	1487	2206	2638	1928	1666	1443	21370	66312
2776 3460	23823	2333	2939	2213	2399	1445	2001	3137	2327	2027	2602	23423	73771
2451 7005	27952	2080	5257	2456	3555	647	1855	4526	1240	713	1070	23399	80944
360 2691	13081	1088	1937	1550	2091	386	1114	1626	462	235	162	10651	35876
2091 4314	14871	992	3320	906	1464	261	741	2900	778	478	908	12748	45068
19	2ª déc.	21	22	23	24	25	26	27	28	29	30	3° déc.	Mors

rée lation	R				,							68.4								
Du d'insc	H. min	9.03	6.40	6.56	11.00	10.10	6.11	10.18	6.24	1.35	10.30	78.48	1.24	1.09	3.25	10.12	10.15	8.57	2.09	0.21
8	jour	1662	2327	2501	2014	1479	2410	1927	2885	2427	2101	21733	2941	2527	3045	2075	1588	2231	2335	2079
Diffusé 10 cal. cm	p.m	1027	1057	1174	770	969	931	1166	1275	992	1083	10171	1188	1261	1335	835	1018	1296	987	1035
1/	a.m	635	1270	1327	1244	783	1479	761	1610	1435	1018	11562	1753	1266	1710	1240	570	935	1348	1044
	jour	5859	5540	5187	6294	6561	5063	5923	5433	3395	6255	55510	3362	2732	4208	6338	7021	5794	2981	2152
Global 10 cal. cm	p.m.	2526	2788	2453	3174	3219	3115	2481	2578	1028	3153	26515	1341	1440	2026	3677	3189	2246	1279	1108
1/	a.m.	3333	2752	2734	3120	3342	1948	3442	2855	2367	3102	28995	2021	1292	2182	2661	3832	3548	1702	1044
	jour	5575	4072	2984	6219	6867	3252	5693	3156	1297	5729	44844	462	332	1279	5098	6721	4497	778	86
Direct 10 cal. cm ⁻	p.m.	1835	2130	1000	3351	3129	2644	2002	1488	102	2808	20489	138	222	749	3623	2605	1313	303	86
1/1	a.m.	3740	1942	1984	2868	3738	608	3691	1668	1195	2921	24355	324	110	530	1475	4116	3184	475	0
DATE		1	5	က	4	5	9	7	8	6	10	1re déc.	11	12	13	14	15	16	17	18

TABLEAU 17. Le rayonnement solaire à Lwiro. Décembre 1953.

à lwiro en 1953
	42.4												79.5	63.9
3.12 7.42	48.46	9.25	9.37	7.26	8.53	8.37	7.15	8.45	11.00	10.18	9.24	10.06	100.47	228.20
2676 2084	23581	1801	1653	2892	1492	1732	2510	2475	1892	2527	1883	2149	23006	68320
1475 1053	11483	953	1048	1557	787	927	1257	1344	1179	1179	814	1014	12119	33773
1201	12098	848	605	1335	705	805	1253	1131	713	1348	1009	1135	10887	34547
4062 5697	44347	6109	5969	5325	5865	5675	5765	6314	6338	6311	5845	5875	65391	165248
2710 2773	21789	2958	2565	2366	2572	2379	2608	3046	3089	3065	3177	2888	30713	79017
$1352 \\ 2925$	22558	3151	3404	2959	3293	3296	3157	3268	3249	3246	2668	2987	4678	86231
$1524 \\ 4205$	24982	5750	5836	3049	5648	5288	4077	5345	6711	5332	5767	5246	57049	126875
1344 1887	12270	2378	1759	1099	2038	1631	1741	2158	2955	2680	3067	2310	23816	56575
180 2318	12712	3372	4077	1950	3610	3657	2336	3187	3756	2652	1700	2936	33233	70300
19.20	2e déc.	21	22	23	24	25	26	27	28	29	30	31	3° déc.	Mors

ÉTUDE DE LA RADIATION SOLAIRE

70

TABLEAU 18.

Récapitulation annuelle.

Lwiro 1953.

Total mensuel et moyenne journalière mensuelle.

Mois	Rayon	nement en cal	Durée d'insolation			
1.1010	direct	global	diffusé	H. min.	R	
Janvier	10838,9 349,6	15213,3 490,8		234,12 7,33	_	
Février	8453,4 301,9	13089,0 467,5	_	195,38 6,59		
Mars	8979,0 289,6	13206,2 426,0	_	186,19 6,01	-	
Avril	7211,5 240,4	13302,7 443,4	— ,	169, 3 4 5,39	_	
Mai	10019,6 323,2	13372,5 431,4	_	206,04 6,39		
Juin	5307,0 176,9	9821,8 327,4	_	135,14 4,31	—	
Juillet	11792,0 380,4	13690,9 441,6	_	262,37 8,28	75,7	
Août	7323,5 236,2	12238, 2 394,8	-	186,11 6,01	53,6	
Septembre	9556,4 318,5	13325,9 444,2		173,28 5,47	51,5	
Octobre	8357,5 269,6	14860,7 479,4	_	189,45 6,07	54,0	
Novembre	8094,4 269,8	14008,3 466,9	7891,2 263,0	164,04 5,28	47,6	
Décembre	12687,5 409,3	16524,8 533,1	6832,0 220,4	228,20 7,22	63,9	

À**s**lwiro en 1953

73

TABLE DES FIGURES

FIG. 1 : Levé topographique de l'horizon de Lwiro	6
FIG. 2 : Tubes à diaphragmes du pyrhéliomètre à disque d'ar- gent (I) et du pyrhéliographe utilisé à Lwiro (II)	8
FIG. 3 : Enregistrement de l'ultra-violet avec cellule au cadmium en impulsions et en continu	17
FIG. 4 : Transmission des filtres colorés Parra-Mantois VB2, VJ3, VR2 et Schott OG1 et RG2	18
FIG. 5 : Émission du ciel partagé en trois zones, en fonction de la nébulosité	31
FIG. 6 : La radiation directe par demi-journée en fonction de la nébulosité moyenne	33
FIG. 7 : Facteurs de pénombre géométrique du pyrhéliomètre à disque d'argent (trait plein) et du pyrhéliographe de Lwiro (tirets)	36
FIG. 8 : Efficacité du rayonnement du ciel pour le pyrhéliomètre à disque d'argent (trait plein) et pour le pyrhéliographe de Lwiro (tirets)	38
FIG. 9 : Valeur absolue de l'erreur par demi-heure sur l'en- semble des trois composantes du rayonnement en fonction du rayonnement global en septembre 1956	42
FIG. 10 : Valeur absolue de l'erreur par journée sur l'ensemble des trois composantes du rayonnement en fonction du rayon- nement global et en pourcentage de ce dernier (septembre 1956)	43
GRAPH. 1 : La pluie à Lwiro de février à décembre 1953	66
GRAPH. 2: Température de l'air sous abri à Lwiro en 1953 par pentade : maximum absolu, moyenne journalière, minimum absolu	72

étude de la radiation solaire à lwiro en 1953	77
GRAPH. 3 : L'insolation à Lwiro en 1953 par décade et la moyen- ne journalière mensuelle	73
GRAPH. 4 : Le rayonnement direct à Lwiro en 1953 : sommes décadaires et moyenne journalière mensuelle	74
GRAPH. 5 : Le rayonnement global à Lwiro en 1953 : sommes décadaires et moyenne journalière mensuelle	75
Рното 1: Vue du laboratoire de Lwiro in	fine
Рното 2: La mesure du rayonnement diffusé in	fine
Рното 3: La mesure de l'ultraviolet in	fine
Рното 4: La salle des enregistreurs in	fine
PHOTP 5: Une partie de la terrasse d'observation in	fine

TABLE DES MATIÈRES

I. Introduction	3
II. Activité générale	6
A. Rayonnement 1. Énergie 2. Durée	7 7 10
 B. Climatologie 1. Pression barométrique 2. Pluie 3. Vent 4. Nébulosité 5. Température et humidité 	12 12 12 13 14 14
 C. Mesures particulières 1. Ultra-violet 2. Énergie dans différents domaines spectraux	15 15 16 19
III. L'enregistrement des données du rayonnement et leur analyse	20
A. Équipement 1. Appareils étalons 2. Enregistreurs	20 20 21
B. Méthodes de réduction	24
C. Étalonnages D. Contrôle et précision	34 40
IV. Conclusion	46
Bibliographie	48
Données numériques	50
Graphiques	66
Table des figures	76
Table des matières	78

Рното 1. — Vue du laboratoire de Lwiro.

Рното 2. — La mesure du rayonnement diffusé.

Рното 3. — La mesure de l'ultra-violet. Рното 4. — La salle des enregistreurs.

Рното 5. — Une partie de la terrasse d'observation.

. .

ÉDITIONS J. DUCULOT, S. A., GEMBLOUX (Imprimé en Belgique).