Institut Royal Colonial Belge

SECTION DES SCIENCES TECHNIQUES

Mémoires. — Collection in-4°. Tome IV. — Fascicule 3. Koninklijk Belgisch Koloniaal Instituut

AFDRELING DER TECHNISCHE WETENSCHAPPEN

Verhandelingen. — Verzameling in-4°, Boek IV. — Aflevering 3.

LA GRAVIMÉTRIE

ET LES ANOMALIES DE LA PESANTEUR

EN AFRIQUE ORIENTALE

PAR

M. DEHALU

PROFESSEUR À L'UNIVERSITÉ DE LIÉGE, Membre de l'Académie Royale et de l'Institut Royal Colonial Belge.

BRUXELLES

Librairie Falk fils, GEORGES VAN CAMPENHOUT, Successear, 22, rue des Paroissiens, 22. BRUSSEL Boekhandel Falk zoon, GEORGES VAN CAMPENHOUT, Oprolger, 22, Parochianenstraat, 22.

1943

LISTE DES MEMOIRES PUBLIÉS

COLLECTION IN-8°

SECTION DES SCIENCES MORALES ET POLITIQUES

Tome I.

PAGÉS, IE R. P., Au Ruanda, sur les bords du lac Kivu (Congo Belge). Un royaume hamite au centre de l'Afrique (703 pages, 29 planches, 1 carte, 1933). fr. 125 s

Tome II.

LAMAN, K.-E., Dictionnaire kikongo-français (XCIV-1183 pages, 1 carte, 1936) . . fr. 300 .

Tome III.

2. LOUWERS, O., Le problème financier et le problème économique au Congo Belge en 1932 (69 pages, 1933).

3. MOTTOULLE, le D^r L., Contribution à l'étude du déterminisme fonctionnel de L'industrie dans l'éducation de l'indigène congolais (48 pages, 16 planches, 1934) 30 »

Tome IV.

MERTENS, le R. P. J., Les Ba dzing de la Kamtsha :

١.	Première 1935)	partie :	Ethnograp	hie (381	pages,	3 cart	es, 42	figures,	10 pla	nches, fr.	60	,
2.	Deuxième	partie :	Grammaire	de l'Id	lzing de	la Kan	ntsha	(XXXI-388	pages,	1938) .	115	3
3.	Troisième Franca	partie is-Idzing	: Diction	<i>iaire I</i> 5. 1 car	dzing-Fre te. 1939)	ançais	suivi	d'un	aide-m	émoire	70	D

Tome V.

1.	VAN REETH, de E. P., De Rol van den moederlijken oom in de inlandsche familie	-		
	(Verhandeling bekroond in den jaarlijkschen Wedstrijd voor 1935) (35 bl., 1935).	6	2	•
2.	LOUWERS, O., Le problème colonial du point de vue international (130 pages, 1936)	20	D	,
3.	BITTREMIEUX, le R. P. L., La Société secrète des Bakhimba au Mayombe			
	(327 pages 1 carte, 8 planches, 1936)	55	3	J

Tome VI.

MOELLER, A., Les grandes lignes des migrations des Bantous de la Province Orientale du Congo belge (578 pages, 2 cartes, 6 planches, 1936). fr. 100 »

Tome VII.

1937) 1 en het	5 x)	
en het		
in den		
heeft)		
1	0 .	,
ez les		
3) 1	0 »	
	in den heeft) 	in den heeft) 10 m Lez les S) 10 »

Tome VIII.

HULSTAERT, le R. P. G., Le mariage des Nkundó (520 pages, 1 carte, 1938) . . . fr. 100 »

Å

M. DEHALU. La Gravimétrie et anomalies de la pesanteur en Afrique orientale. Bxl, IRCB, 1943, 80 p., br. 15 fig. (Mém. 3ème Cl., coll. in-4°, t. IV.3).

3844 / dac

Prix neuf : 370,-

370,-

Zaïre, Sciences techniques, Géographie

LA GRAVIMÉTRIE

500

ET LES ANOMALIES DE LA PESANTEUR

EN AFRIQUE ORIENTALE

PAR

M. DEHALU

Professeur à l'Université de Liége, Membre de l'Académie Royale et de l'Institut Royal Colonial Belge.

MÉM, INST. ROYAL COLONIAL BELGE.

Mémoire présenté à la séance du 27 février 1942.

• •

_

AVANT-PROPOS

Le but que je me suis assigné en publiant ce travail est tout d'abord de faire connaître dans nos milieux coloniaux la portée des observations gravimétriques entreprises en Afrique Orientale sous les auspices de l'Université de Cambridge et de montrer que des recherches qui, à première vue, semblent ne présenter qu'un intérêt d'ordre purement spéculatif peuvent néanmoins jeter quelque lumière sur la tectonique générale d'une région.

J'ai voulu aussi attirer l'attention sur l'importance des données gravimétriques en vue de la solution des problèmes qui intéressent non seulement la géodésie et par suite la cartographie de notre vaste empire colonial, mais aussi celles des autres contrées du globe.

A ce sujet un projet de collaboration internationale a été présenté à la VI[®] Assemblée générale de l'Association internationale de Géodésie et de Géophysique, tenue à Edimbourg en 1936. Notre intérêt bien compris est d'en appuyer l'exécution en y apportant une collaboration effective.

Malheureusement la méthode gravimétrique est moins cultivée en Belgique que dans d'autres pays, où elle a donné lieu à d'admirables travaux.

La réduction des observations est généralement considérée comme ardue et, en dehors des mémoires originaux, il n'existe pas d'exposé permettant une application aisée des calculs.

D'ailleurs les procédés créés aux États-Unis d'Amérique par Hayford et Bowie, au début du siècle, ont depuis été considérablement simplifiés et il m'a paru que l'occasion était propice à une mise au point qui, éventuellement, pourrait servir de guide à ceux qui seront chargés d'effectuer des mesures de gravité sur le territoire de notre Colonie. Sous ce rapport les travaux du D^r E. C. Bullard, sous la direction de qui furent entreprises les observations du pendule dans l'Est-Africain et en Égypte, méritaient d'être signalés, tant par les résultats importants acquis au point de vue géologique que par les simplifications apportées aux calculs des anomalies de gravité. Ils forment la base de cet exposé.

J'ai cru utile d'y ajouter, pour faciliter les calculs de réduction, quelques tables indispensables que j'ai calculées ou empruntées au mémoire de M. Heiskanen, paru dans le *Bulletin géodésique*, n° 30, 1931.

Pour terminer j'ai exposé le théorème de Stokes et l'application au calcul des formules qui en dérivent. Mais je n'ai pas abordé la question des instruments de mesure; ceux-ci sont de genres très divers et leur description aurait inutilement allongé une matière déjà longue. Le choix à faire dépend d'ailleurs de trop de conditions pour conseiller l'emploi de l'un ou l'autre type d'appareils. C'est, à mon avis, une question qui doit être débattue au moment d'entreprendre les travaux de campagne.

J'ai mentionné à la fin de ce travail une liste des principaux mémoires à consulter.

LA GRAVIMÉTRIE

ET LES ANOMALIES DE LA PESANTEUR EN AFRIQUE ORIENTALE

A. – LA GRAVIMÉTRIE

§ 1. La formule de Clairaut.

L'étude de la figure de la Terre peut s'entreprendre par deux méthodes différentes, l'une géométrique et l'autre dynamique.

La première détermine à la fois la forme et les dimensions de la Terre par la mesure d'arcs de méridien et de parallèle qu'on effectue, comme on sait, par le procédé de la triangulation; la seconde, par des mesures de l'intensité de la pesanteur en des points judicieusement répartis sur tout le globe, permet d'en déterminer la forme.

Cette dernière méthode est née d'une découverte faite en 1672 par l'astronome français Richer, qui, observant à Cayenne, constata la diminution de la longueur du pendule battant la seconde. Huyghens et Newton attribuèrent ce phénomène à l'aplatissement de la Terre. Pour vérifier ce résultat, l'Académie des Sciences de Paris fit procéder, en 1736, à des mesures d'arcs de méridien en Laponie et au Pérou. Ces mesures confirmèrent la découverte de Richer. Cette observation si simple eut des conséquences énormes pour la question de la figure de la Terre, parce qu'elle indiquait non seulement que celle-ci n'est pas sphérique, mais que sa forme pouvait être étudiée par une méthode nouvelle dont l'importance n'apparut réellement qu'après la publication du célèbre mémoire de Clairaut intitulé : La figure de la Terre tirée des principes de l'hydrostatique (1747). 6 M. DEHALU. -- LA GRAVIMÉTRIE ET LES ANOMALIES

Clairaut, supposant une Terre primitivement fluide, démontre que, sous les effets combinés de l'attraction et de la force centrifuge, elle prendra nécessairement la forme d'un sphéroïde légèrement aplati aux pôles, sphéroïde d'ailleurs très peu différent d'un ellipsoïde de révolution. Il établit ensuite la loi de variation de l'intensité de la pesanteur

$$\gamma_0 = \gamma_{\rm E} (1 + \beta \sin^2 \varphi), \tag{1}$$

où

 γ_0 est l'accélération de la pesanteur en un point de latitude φ , $\gamma_{\rm E}$, l'accélération de la pesanteur à l'équateur, $\beta = \frac{5}{2}q - \alpha$, où $q = \frac{\omega^2 \alpha^3}{k^2 {\rm M}} = \frac{{\rm force\ centrifuge\ équatoriale}}{{\rm pesanteur\ à\ l'équateur}}$ $\alpha = {\rm aplatissement.}$

La relation (1) est vraie quelle que soit la loi des densités à l'intérieur de la Terre.

Pour les éléments de l'ellipsoïde terrestre, la II^e Assemblée générale de l'Union géodésique et géophysique internationale, réunie à Madrid en 1924, a adopté ceux que Hayford avait déduits de ses triangulations aux États-Unis, ou plus exactement les valeurs de

 $a \text{ (demi-grand axe)} = 6.378.388 \text{ m.} \quad \alpha = 1:297.$

En partant de ces valeurs, on obtient

b (demi-axe polaire) = 6.356.911,946 m.

Tandis que Hayford donne

b = 6.356.909 m.,

valeur qui diffère d'environ 3 m. de la précédente. Si l'on adoptait la valeur de Hayford, on aurait

$$\alpha = \frac{1}{296.659}$$
 et non $\frac{1}{297}$.

A la Conférence de Paris, en 1911 [1], les astronomes avaient adopté l'aplatissement 1 : 297 résultant des travaux de Hayford.

Par les observations de gravité, Helmert a trouvé 1:296,7, Bowie 1:297,4 et Heiskanen 1:296,7 \pm 0,5.

La formule de Clairaut a été complétée dans la suite par l'adjonction de termes, dont l'influence est en réalité très faible,

et

notamment d'un terme en $\sin^2 2\varphi$. La IV^{*} Assemblée générale de l'Union géodésique et géophysique internationale, réunie en 1930 à Stockholm, a adopté pour le calcul de l'intensité de la pesanteur normale, basée sur les éléments de l'ellipsoïde international donnés ci-dessus et sur la valeur de l'intensité de la pesanteur à l'équateur :

 $\gamma_E = 978.049 \text{ cm./sec.}^2$,

la formule proposée par Cassinis [2],

 $\gamma_0 = 978,0490 (1 + 0,0052884 \sin^2 \varphi - 0,0000059 \sin^2 2 \varphi).$ (2)

L'accélération de la pesanteur s'exprime actuellement en galilée :

1 galilée \equiv 1 gal \equiv 1 cm./sec.² \equiv 1 dyne.

On sait que la dyne est la force qui, agissant sur l'unité de masse, ou le gramme, produit une accélération de 1 cm. par seconde.

1 milligal = 1 mgal = 10^{-3} cm./sec².

Avant l'adoption de la formule de Cassinis, on a eu recours souvent à une formule établie par Helmert (1901) :

$$\gamma_0 = 978,030 \left(1 + 0.005302 \sin^2 \varphi - 0,000007 \sin^2 2\varphi\right). \tag{3}$$

Elle donne des valeurs de γ plus faibles de 19 mgals environ que la formule internationale.

Les formules de Cassinis et Helmert peuvent servir à contrôler les valeurs de la gravité mesurée en divers points du globe. Logiquement, il conviendrait de déterminer directement les paramètres de la formule de Clairaut par des mesures de l'intensité de la pesanteur. C'est ce que divers auteurs ont tenté, comme nous l'avons dit plus haut.

Dans un travail récent [3], N. F. Zhuravlew, de l'Observatoire de Sternberg (U. R. S. S.), a réuni 10.323 observations de gravité effectuées jusqu'en 1936 et s'est proposé d'en déduire l'aplatissement par diverses combinaisons de ces mesures. Il a trouvé en moyenne comme valeur de l'aplatissement $\frac{1}{296.62}$. Malheureusement sur ce nombre de 10.323 observations, 1.389 seulement appartiennent à l'hémisphère austral. 8 M. DEHALU. – LA GRAVIMÉTRIE ET LES ANOMALIES

W. Heiskanen [4], en 1928, a déduit de 841 mesures de gravité (réduites isostatiquement), avec et sans les 137 mesures effectuées en mer par F. A. Vening Meinesz, quelques formules de gravité dont la plus importante avec le terme de longitude est

 $\gamma_0 = 978.049 \left[1 + 0.005293 \sin^2 \varphi - 0.000007 \sin^2 2\varphi + 0.000019 \cos^2 \varphi \cos 2(\lambda - 0^\circ) \right] \quad (3)$

et la suivante sans le terme de longitude :

$$\gamma_0 = 978.049 \left[1 + 0.005289 \sin^2 \varphi - 0.000007 \sin^2 \varphi \right]. \tag{4}$$

La formule (3) se rapporte à un ellipsoïde à trois axes qui n'est pas une figure de révolution.

En 1939, W. Heiskanen a entrepris de nouveaux calculs reposant sur d'autres données plus nombreuses. Sa conclusion est que les observations en mer donnent actuellement à l'équateur une valeur de 30 mgals plus grande que les observations sur la terre ferme et que les corrections de la formule internationale (1) sont dans tous les cas très faibles. A l'équateur, — 4 mgals, à la latitude de 45° , +3 mgals et à la latitude de 60° , +6 mgals. Il recommande donc l'usage de la formule (2), tout au moins actuellement (¹).

Pour pouvoir utiliser les mesures de l'intensité de la pesanteur effectuées sur la Terre, il faudrait pouvoir les réduire à l'ellipsoïde de référence. Mais cette surface que nous supposons être la forme mathématique de la Terre est purement idéale; il faut donc la remplacer par une surface qui soit accessible à nos mesures. Pour les mers, qui occupent les quatre cinquièmes environ du globe, il est tout naturel de prendre le niveau moyen des mers, qui est une surface de niveau perpendiculaire au fil à plomb. Pour la terre ferme, on imagine que cette surface peut être prolongée au-dessous des continents tout en conservant ses propriétés de surface de niveau. On imagine alors les mers reliées entre elles par des canaux étroits et c'est la sur-

⁽¹⁾ Pour faciliter l'application de cette formule, des tables spéciales ont été calculées par MM. W. D. Lambert et F. W. Darling : « Tables for theoretical gravity according to the new international formula » (*Bull. géod.*, n° 32, 1931, pp. 327-340).

face moyenne des eaux de ces canaux qui prolonge le niveau moyen de la mer. La surface ainsi définie est le géoïde.

La géodésie nous apprend que le géoïde ne diffère guère de l'ellipsoïde de référence. S'il en est ainsi les mesures de la gravité réduites au géoïde seront égales aux valeurs calculées par la formule de Clairaut. Les écarts éventuels, $g_c - g_0$, en chaque point, permettront de déduire les distances du géoïde à l'ellipsoïde

Mais en pratique il n'est pas possible de procéder de la sorte. Soient, en effet, E (fig. 1) la surface de l'ellipsoïde de référence; en un point A de E, menons une normale à E et prolongeons-la jusqu'en M sur le géoïde G. Ce point M sera déterminé si nous connaissons la longueur N du segment AM; de sorte que le géoïde apparaît ici comme le lieu des points M.

L'accélération de la pesanteur qu'on rapporte aux points de l'ellipsoïde qui représente la surface mathématique de la Terre est dite gravité normale; on la désigne généralement par γ ; celle qu'effectivement on constate en M sur le géoïde est représentée par g.

Pour comparer ces deux valeurs, on transporte la valeur de γ le long de la normale M et l'on obtient la valeur normale γ_M relative

à M. La différence $g_{\rm M} - \gamma_{\rm M} = \Delta g$ représente l'anomalie totale ou vraie de la gravité en M. Pour faire cette translation et par suite calculer Δg , il faut connaître N, qui en général n'est pas connu et nous devons nous borner à considérer l'anomalie apparente, définie par $\Delta'g = g_{\rm M} - \gamma_{\rm A}$.

Mais une formule rigoureuse pour calculer N a été établie en 1849 par Stokes; nous y reviendrons plus loin.

Remarquons en passant que la normale en M au géoïde, représentant la verticale, fait avec la normale MA à l'ellipsoïde un angle ε , qui n'est autre que la *déviation de la verticale* ou déviation locale que l'on considère en géodésie.

§ 2. Corrections des mesures.

Jusqu'à présent nous avons considéré l'intensité de la pesanteur rapportée à une terre idéale ayant la même forme et la même grandeur que l'ellipsoïde de révolution, qui coïncide le mieux avec la surface du niveau moyen des mers ou géoïde d'une terre réelle, mais n'ayant aucun relief topographique, ni aucune variation de densité à une profondeur donnée sous cette surface. Pour transformer la terre réelle en cette terre idéale, il faut imaginer que tous les matériaux se trouvant au-dessus du niveau de la mer soient enlevés, l'eau des océans remplacée par des matériaux de densité égale à la densité moyenne des roches superficielles et toutes les densités à une profondeur donnée modifiées de manière qu'elles correspondent à la densité moyenne de la terre à cette profondeur.

Dans cette terre idéale la densité est supposée croître avec la profondeur, comme cela a lieu en moyenne pour la terre réelle. Mais, su dans une terre idéale toutes les masses se trouvant à la même profondeur sont supposées avoir la même densité, dans la terre réelle ces masses ont des densités qui diffèrent légèrement les unes des autres.

Le problème à résoudre est donc fort complexe; il ne peut être abordé que par étapes. En tout premier lieu, il convient de déduire de la pesanteur g observée en un lieu, la pesanteur g_M sur le géoïde. Pour cela on peut définir la pesanteur corrigée au moyen d'un tube de force. Si S₀ et S (fig. 2) sont respectivement les sections extrêmes du tube de force à la surface du géoïde et au lieu d'observation, m la

masse de la matière traversée par le tube de force, le théorème des flux de force donne

$$g_{\rm M} = g \frac{{\rm S}}{{\rm S}_0} - \frac{4\pi km}{{\rm S}_0}.$$
 (5)

Si R et R' représentent les rayons principaux du géoïde et h la hauteur du tube de force au point considéré, on a

$$\frac{S}{S_0} = \frac{(R+h)(R'+h)}{RR'}.$$
 (6)

D'autre part, si ρ désigne la densité des couches traversées par le flux de force,

$$\frac{m}{S_0} = \frac{1}{S_0} \int_0^h S \rho dh = \frac{1}{RR'} \int_0^h (R+h) (R'+h) \rho dh = \rho h \text{ approximativement.}$$
(7)

On trouve alors pour (5)

$$g_{\mathbf{M}} = g \left[1 + h \left(\frac{1}{\mathbf{R}} + \frac{1}{\mathbf{R}'} \right) \right] - 4 \pi k \rho h.$$
(8)

Mais pour la Terre, si Δ désigne sa densité, on a

$$4\pi k = \frac{3g}{\mathrm{R}\Delta};$$

d'où, en supposant R = R',

$$g_{\mathsf{M}} = g \left[1 + \frac{2h}{\mathsf{R}} \left(1 - \frac{3}{2} \frac{\rho}{\Delta} \right) \right]. \tag{9}$$

Telle est la formule de réduction cherchée. On voit que les corrections à faire subir à la valeur observée comprennent deux termes : le premier $\frac{2h}{R}g$ est proportionnel à la hauteur de la station et ne dépend aucunement de la densité des couches traversées. Pour cette raison on le désigne sous le nom de terme de *correction à l'air libre* ou *correction de Faye*. Le second $-3\frac{\rho}{\Delta}\frac{h}{R}$ dépend de l'altitude du point d'observation et du rapport des densités des roches superficielles et de la Terre. On l'appelle *correction de Bouguer*, du nom du géodésien français qui le premier l'a appliquée.

Ceci suppose que la matière attirante se trouve située entre le point S (fig. 2) d'observation et le géoïde, c'est-à-dire qu'à la hauteur de la station S la surface du sol est parallèle au géoïde.

Mais dans le voisinage peut exister une montagne M plus élevée que la station ou une vallée V. Il faut donc ajouter ou retrancher une nouvelle correction désignée sous le nom de *correction topographique*.

Si l'on applique ces trois corrections, on devrait trouver en général des valeurs plus concordantes que celles fournies directement par l'observation, c'est-à-dire que les écarts, $\Delta'g = g_{\rm M} - \gamma_{\rm A}$, entre les valeurs réduites et les valeurs calculées par une formule analogue à celle de Clairaut, telle la formule (2), par exemple, devraient être en général voisins de zéro. Or, c'est le contraire qui se produit, tout au moins en ce qui concerne le terme de Bouguer et les corrections topographiques. L'accord des mesures est en général plus satisfaisant quand on les omet dans les réductions. Mais comme ils représentent l'attraction sur le point d'observation de la matière interposée entre ce point et le géoïde et de celle provenant du relief topographique avoisinant les négliger reviendrait à supposer que les montagnes sont creuses.

L'inverse se constate pour les observations faites en mer, qui, en général, indiquent un excès de matière sous les océans. Des constatations analogues ont été faites en géodésie à propos des déviations locales de la verticale. Si l'on tient compte de l'attraction du relief topographique, les déviations de la verticale calculées sont en général plus fortes que celles qu'on observe.

§ 3. L'isostasie.

Pour expliquer ce phénomène, il faut donc supposer qu'il existe une cause inconnue ou une distribution de matière qui contrarie l'attraction du relief topographique. La recherche de cette cause, qui intéresse également les géologues et les séismologues, a ainsi contribué à élargir le cadre des applications de la géodésie.

Deux hypothèses ont surtout retenu l'attention des savants.

La première, que Hayford et Bowie [5] ont tenté de justifier pour le territoire des États-Unis, a été formulée en 1855 par l'archidiacre Pratt, et la seconde, due à l'astronome anglais Airy, a été soumise à de nombreuses vérifications par W. Heiskanen [6]. Toutes deux admettent qu'il existe en profondeur des masses capables de compenser les attractions du relief topographique.

La densité moyenne de la Terre est d'environ 5,5 fois celle de l'eau, celle de la litosphère de 2,7. La densité des matériaux constituant la Terre croît de la surface au centre. Les plus récentes recherches basées sur la propagation des ondes séismiques indiquent que l'accroissement de densité est 0,2 jusqu'à 60 km. de profondeur; entre 60 et 100 km. on observe une discontinuité; la densité croît de 0,4 à 0,8, pour reprendre ensuite un accroissement régulier. A la profondeur de 100 km. la température est évaluée à 800° C environ, tandis que la pression est de 30.000 kg./cm². Dans de telles conditions, non encore réalisées en laboratoire, les matériaux doivent se trouver dans un état plastique et se comporter à la fin comme des solides et des liquides. On admet que le magma jouit de la propriété des liquides de transmettre dans toutes les directions les forces de pression auxquelles il est assujetti. Il est constitué de silice et de magnésie et pour cette raison on le désigne sous le nom de *sima*, tandis que la croûte supérieure, composée principalement de silice et d'alumine, se désigne sous le nom de sial.

On peut illustrer la théorie de Hayford de la manière suivante : imaginons un récipient contenant du mercure et des cylindres de mêmes sections, de masses égales, mais constitués de matières de den-

14 M. DEHALU. – LA GRAVIMÉTRIE ET LES ANOMALIES

sités différentes moindres que celle du mercure. Placés côte à côte dans le récipient, ils flotteront en déplaçant la même quantité de mercure; leurs bases inférieures se trouveront dans le même plan horizontal tandis que leurs bases supérieures seront à des hauteurs inversement proportionnelles à la densité des cylindres et formeront ainsi une surface irrégulière analogue à la surface terrestre, tandis que le mercure figure le magma ou une substance très plastique de plus grande densité que la croûte terrestre.

L'équilibre ainsi établi a reçu le nom d'équilibre isostatique et la base horizontale des cylindres est la surface de compensation.

Par analogie supposons (fig. 3) qu'on découpe dans la terre des prismes verticaux de même masse et de sections unitaires correspondant à des compartiments océaniques et continentaux, plaines ou montagnes; ces blocs, d'après Hayford, s'enfonceront dans le magma de la même quantité, mais leurs hauteurs varieront d'une manière inversement proportionnelle à leur densité. Leurs bases inférieures reposeront sur une surface de compensation qui supportant partout des pressions constantes par unité de surface (par exemple 1.000 km²) sera en équilibre hydrostatique.

Il en résulte que tout excès de masse doit être compensé par un défaut de masse situé sur la même verticale et inversement. Aux con-

tinents, aux montagnes doivent correspondre des matériaux sousjacents de faible densité. Par contre, les matériaux situés au-dessous des lacs suffisamment étendus, des mers, des océans, doivent être particulièrement denses.

Voici comment Hayford effectue le calcul de la compensation :

Considérons (fig. 4) trois compartiments, cylindriques verticaux, de même section, compris entre la surface de la Terre et la surface de compensation, le premier continental, d'altitude (positive) h, le

deuxième au niveau de la mer et le troisième dans un océan dont la profondeur (négative) est h'. Soient δ , la densité moyenne de l'écorce terrestre supposée constante; δ_0 , la densité des mers; $\delta - \delta_1$, la densité en défaut des masses situées sous le compartiment continental; $\delta + \delta'_1$ la densité en excès des masses situées sous le compartiment océanique; h_1 , la profondeur (négative) de la surface de compensation au-dessous du niveau de la mer, supposée constante. En exprimant que les pressions sont les mêmes sur cette surface dans les trois compartiments, on a

$$h\delta - h_i(\delta - \delta_i) = -h_i\delta = -h'\delta_0 - (h_i - h')(\delta + \delta'_i);$$

d'où, pour le compartiment continental,

$$h\delta + h_i\delta_i = 0 \tag{1}$$

et pour le compartiment océanique,

$$h'(\delta - \delta_0) + \delta'_i(h' - h_i) = 0.$$
⁽²⁾

Ces formules seront combinées avec l'attraction du relief topographique comme nous l'indiquerons plus loin.

La profondeur de la surface de compensation déduite des déviations de la verticale sur le territoire des États-Unis a été trouvée égale à 113 km. environ par Hayford. En discutant les observations de gravité faites dans cette même région, MM. Hayford et Bowie ont trouvé 96 km., nombre qui coïncide presque exactement avec celui

fourni par les sommets de triangulation élevés, c'est-à-dire par les points qui conviennent le mieux à de semblables déterminations.

Dans la théorie d'Airy-Heiskanen, la croûte terrestre de densité 2,67 flotte sur un magma fluide ou plastique qui se comporte comme un corps solide élastique dont la densité serait 3,27. De cette façon, les couches les plus légères de l'écorce terrestre (sial) plongent dans la couche plus dense (sima), plus profondément sous les montagnes que sous les plaines et les océans (fig. 5).

L'épaisseur de l'écorce est plus grande sous les montagnes et plus petite sous les océans que dans les régions dont l'altitude est voisine de zéro. Dans cette hypothèse la compensation isostatique a lieu d'abord dans les couches les plus profondes et sous les montagnes. notamment à une profondeur plus grande que sous les océans.

Alors que dans la théorie de Pratt on suppose une profondeur de compensation constante et des densités variables, dans la théorie d'Airy, au contraire, on suppose que la densité de la croûte terrestre est constante et la profondeur de compensation variable. En général, d'ailleurs, l'épaisseur de la croûte terrestre est plus faible dans cette seconde théorie que dans la première.

La profondeur de la surface de compensation de la première hypothèse est remplacée dans la seconde hypothèse par l'épaisseur de l'écorce et par la différence de densité entre celle-ci et la couche de magma sous-jacent.

Voici comment W. Heiskanen calcule la profondeur à laquelle s'enfonce la portion de l'écorce terrestre dans le magma sous-jacent.

Soient δ et δ_1 les densités respectives de l'écorce et du magma sous-jacent et T la profondeur à laquelle s'effectue la séparation des deux couches dans le cas d'un relief nul. Dans le cas d'un relief correspondant à une altitude H la profondeur à laquelle s'enfoncera la portion d'écorce terrestre de densité δ sera

$$h_i = \mathbf{T} + \frac{\delta}{\delta_i - \delta} \mathbf{H} = \mathbf{T} + t.$$

Heiskanen prend

$$\delta = 2,67$$
 et $\delta_1 = 3,27;$

ďoù

$$h_1 = T + 4,45 H = T + t.$$

Dans le cas d'un compartiment océanique d'altitude (négative) H, on a, en adoptant 1,027 comme densité de l'eau de mer,

$$h' = T - 2,74 H = T - t'.$$

W. Heiskanen a soumis l'hypothèse d'Airy à de nombreuses vérifications en effectuant les calculs pour différentes épaisseurs de l'écorce et pour plusieurs différences de densité entre l'écorce et le magma plus dense sous-jacent.

2

Il a montré, et ses vues ont été confirmées par des travaux plus récents, que l'hypothèse d'Airy est au moins aussi satisfaisante que celle de Pratt et souvent rend mieux compte des écarts observés.

Dans ces deux théories, on suppose notamment que la compensation est locale, c'est-à-dire qu'à chaque élévation et à chaque dépression, si insignifiantes qu'elles soient, correspond, dans la première, un défaut ou un excès compensateur dans les masses souterraines; dans la seconde, chaque zone est sensée flotter tout entière sur la couche de sima, selon le principe d'Archimède. Ces suppositions sont évidemment inadmissibles, puisqu'elles nécessiteraient une absence complète de résistance à la déformation de l'écorce, de sorte que celle-ci pourrait s'élever ou s'abaisser localement pour s'adapter aux ruptures d'équilibre isostatique causées par l'érosion, la sédimentation, etc. Le système de compensation locale n'a d'ailleurs été adopté que pour la facilité des calculs, tandis que l'erreur commise n'a qu'une influence locale.

Vening Meinesz [7] a proposé une méthode de réduction isostatique régionale plus conforme à nos idées sur les propriétés physiques de l'écorce terrestre et dont l'application est aussi simple que la méthode ordinaire.

Il suppose que l'écorce terrestre réagit sous l'action du poids des masses topographiques surajoutées à la surface de la terre comme une plaque de dimensions infinies et d'épaisseur constante, obéissant aux lois des solides élastiques et flottant librement sur une couche liquide de densité supérieure.

Il est d'ailleurs intéressant de confronter les résultats de ces diverses théories qui, en général, conduisent à des conclusions identiques sur l'équilibre ou le déséquilibre de l'aire étudiée, résultat essentiel au point de vue de la géologie et de la séismologie.

C'est ce qu'a fait notamment Vening Meinesz dans la réduction de ses observations gravimétriques effectuées en mer à bord d'un sousmarin faiblement immergé.

Dans ses recherches gravimétriques en Afrique Orientale [8], E. C. Bullard s'est borné à confronter les résultats de la théorie de Pratt-Hayford pour une profondeur de la surface de compensation de 113,7 km., et de la théorie d'Airy-Heiskanen pour des épaisseurs de la croûte terrestre de 40, 60, 80 et 100 km. Avant d'exposer ces résultats, nous décrirons la méthode de réduction qu'il a appliquée aux mesures effectuées par lui-même ou sous sa direction. Cette méthode, qui s'inspire d'ailleurs de celle suivie par Hayford, Bowie et Heiskanen, a sur celle-ci l'avantage d'une plus grande simplicité. De son côté, Vening Meinesz a publié des tables pour l'application de sa méthode [7].

§ 4. Zones et compartiments terrestres.

La Terre est divisée en zones par des circonférences concentriques (fig. 6) dont le centre coïncide avec la station et les zones, divisées à leur tour en compartiments, sont désignées par des lettres

de A à O, puis numérotées de 18 à 1 jusqu'à l'antipode de la station. Les compartiments sont au nombre de 317.

Les hauteurs moyennes du terrain ou les profondeurs moyennes de la mer dans ces compartiments sont déduites de cartes. A cet effet, on fait usage de transparents en celluloïd portant les limites des compartiments tracées à l'échelle de la carte employée. C'est la partie la plus délicate et la plus difficile, car elle exige une collection importante de cartes du monde.

Voici les schémas des zones et compartiments qui sont les mêmes que dans la méthode de Hayford.

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Zones	Ray intérieurs	ons extérieurs	Compartiments	Courbures
N 38800 3000 166700 28 1350 0 99800 166700 28 1350 18 $1^{\circ}29'58''$ $1^{\circ}41'13''$ 1 17 14113 15452 1 16 15452 21153 1 15 21153 23346 1 14 23346 30305 1 13 30305 41943 16 12 41913 54634 10 11 54634 75130 8 10 75130 1044 4 9 1044 1409 4 8 1409 2041 4 7 2041 2641 2 6 2641 3558 18 5 3558 5104 16 4 5104 7213 12 3 7213 10548 10 2 10548 15056 6 1 15056 180 1	A B C D E F G H I J K L M N O 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1	$\begin{array}{c} 0\\ 2\\ 68\\ 230\\ 590\\ 1280\\ 2290\\ 3520\\ 5240\\ 8440\\ 12400\\ 18800\\ 28800\\ 58800\\ 58800\\ 99800\\ 1^{\circ}29'58''\\ 1\ 41\ 13\\ 1\ 54\ 52\\ 2\ 11\ 53\\ 2\ 33\ 46\\ 3\ 03\ 05\\ 4\ 19\ 13\\ 5\ 46\ 34\\ 7\ 51\ 30\\ 10\ 44\\ 14\ 09\\ 20\ 41\\ 26\ 41\\ 35\ 58\\ 51\ 04\\ 72\ 13\\ 105\ 48\\ 150\ 56\\ \end{array}$	$\begin{array}{c} 2\\ 68\\ 230\\ 590\\ 1280\\ 2290\\ 3520\\ 5240\\ 8440\\ 12400\\ 18800\\ 28800\\ 58800\\ 58800\\ 99000\\ 166700\\ 1^{\circ}41'13''\\ 15452\\ 21153\\ 23346\\ 30305\\ 41913\\ 54634\\ 75130\\ 1044\\ 1409\\ 2041\\ 2641\\ 3558\\ 5104\\ 7213\\ 10548\\ 15056\\ 180\end{array}$	$ \begin{array}{c} 1 \\ 4 \\ 4 \\ 4 \\ 6 \\ 8 \\ 10 \\ 12 \\ 16 \\ 20 \\ 24 \\ 16 \\ 20 \\ 24 \\ 14 \\ 16 \\ 28 \\ 1 \\ $	9 11 45 149 480 1350

HAUTEUR MOYENNE DES ZONES DE A À J ET DE A À K. — Dans ce qui suit, on fait usage des altitudes moyennes des zones A-J et A-K.

A cet effet, on fait la somme des volumes des zones de A à J ou A à K et on la divise par πR^2 , R étant le rayon extérieur de la zone J ou de la zone K.

Il est plus simple de calculer au préalable les coefficients par lesquels il faut multiplier les différentes hauteurs des zones, c'est-à-dire les rapports

$$\frac{r_{e}^{2}-r_{i}^{2}}{r^{2}}=\frac{(r_{e}-r_{i})(r_{e}+r_{i})}{r\cdot r},$$

où r représente le rayon extérieur de la zone J ou K et r_e , r_i respectivement les rayons extérieur et intérieur des différentes zones comprises entre A-J ou A-K. La somme des hauteurs des zones multipliées par les coefficients correspondants donne la hauteur moyenne des zones envisagées.

Le tableau ci-après indique les valeurs des coefficients $\frac{r_e^2 - r_i^2}{r^2}$ pour les zones de A à J et de A à K en unités du 5° ordre décimal.

	A — J	А — К
Zones	$\times 10^{-5}$	× 10 ⁻⁵
A	0	0
В	3	1
Č	31	13
D	492	84
\mathbf{E}	839	365
F	2345	1020
G	4648	2022
Н	9799	4263
Ι	28470	12384
,I	53672	23347
K	, _	56496

Valouna	đà	$r_{e}^{2} - r_{i}^{2}$
valeurs	ųę	2.2

EXEMPLE. — Calcul de l'altitude moyenne des zones de A-J et de A-K pour la station de Moshi.

On multiplie par les coefficients du tableau précédent les hauteurs

22 M. DEHALU. – LA GRAVIMÉTRIE ET LES ANOMALIES

des différentes zones de A-J ou de A-K, et l'on fait la somme des valeurs ainsi obtenues. L'exemple qui suit se rapporte à la station de Moshi, n° 53 du mémoire de E. C. Bullard [8].

	Hauteurs	A = J	А — К
4	m 4139	0.00000	0
B	1139	0.03417	0.00001
C	1139	0.35309	0.14807
Ð	4139	2.18688	0.95676
Е	1130	9.48070	4.12450
F	1105	25.91225	11.27100
G	1120	52.05760	22.64640
Ĥ	1130	110.72870	48.17190
I	1150	327.40500	142.41600
J	1225	657.48200	286.00075
ĸ	1370	5 - C	773.99520
Altitu	le movenne	1185.	1290.

§ 5. Calcul des attractions (1).

Cette méthode est une modification de celle développée par Hayford et Bowie.

1. On calcule d'abord l'attraction d'un plateau d'épaisseur h (en mètres) et de densité 2.67 : c'est le terme de Bouguer,

1.118 $h \times 10^{-4}$ cm./sec².

2. L'attraction d'un plateau s'étendant au delà de la zone O, en tenant compte de la courbure de la terre, est

 $(1.118 h + B) \times 10^{-4} \text{ cm}./\text{sec}^2$.

où B est tiré de la table I, calculée d'après les Tables de Cassinis.

^{(&}lt;sup>1</sup>) Ce calcul repose sur des formules classiques (voir TISSERAND, Méc. cél., t. II, p. 71).

TABLE I.

5.000 2,000 2,500 3.000 3.500 4.000 4.5001.000 - 1.500Hauteurs m. 0 500 б -- 2 -1011 15 17 17 В 0 6 1215 EXEMPLE. — Station de Moshi [8] (p. 494), h = 1.139 m. $1.418 h = 1.439 \times 1.418 \times 10^{-4} \text{ cm./sec}^2 = 1.273 \text{ cm/sec}^2$. (Table I) B = 43

3. On calcule ensuite la différence entre l'attraction du relief topographique et du plateau. Ce calcul se fait pour chaque compartiment au moyen de la table II (p. 63) déduite également des Tables de Cassinis. L'argument de la table est la différence entre la hauteur moyenne du compartiment et celle de la station. Si C est la somme des quantités prises dans la table, l'attraction totale du relief topographique est

 $(1.118 h + B - C) \times 10^{-4} \text{ cm./sec}^2$.

EXEMPLE. — Station de Moshi, h = 1.139 m.

Compartiments	Différences de hauteur	Corrections
E (5, 6, 7)	89 - 89 - 89	3
F (6, 7, 8)	239 - 239 - 239	3
H (1, 2)	461 - 461	2
I (1)	511	1
J(1+2, 16)	811 - 661 - 661	3
K (1, 2, 3, 19, 20)	1661 - 1261 - 861 - 1661 - 1661	7
L (1, 2, 3, 23, 24, 25)	3061 - 2361 - 1261 - 2161 - 2761 - 3561	17
M (1, 13, 14)	1011 - 1561 - 1761	4
		40

En résumé, on a pour l'attraction du relief topographique de la zone A à O, pour la station de Moshi [8] (p. 494) :

Correction de Bouguer 1.273×10^{-4} cm./sec². B 13 C - 40

Attraction du relief topographique jusqu'à la zone 0 1.246×10^{-4} cm. sec².

23

24 M. DEHALU, - LA GRAVIMÉTRIE ET LES ANOMALIES

Pour les stations distantes de moins de 160 km. de la côte, certains compartiments compris sous les littera A à O peuvent se trouver dans la mer. Dans ce cas, le calcul se conduit de la manière suivante : on prend dans la table II la valeur de C correspondant à la somme de la hauteur de la station et de la profondeur du compartiment au-dessous du niveau de la mer et l'on multiplie cette valeur par 0,6, qui représente le quotient de la différence entre la densité 2,67 des roches superficielles et de l'eau de mer, 1,03, par 2,67, c'est-à-dire

$$\frac{2,67-1,03}{2,67} = 0,6.$$

L'erreur commise en remplaçant par de l'eau de mer la partie comprise entre la station et le niveau de la mer est généralement faible. Elle s'obtient en multipliant par 0,4 la valeur de C correspondant à la hauteur de la station. Le coefficient 0,4 correspond, en effet, à

$$\frac{1,03}{2,67} = 0,4.$$

§ 6. Calcul de l'influence de la compensation pour les zones de A à O.

La table III (p. 64) est la reproducton d'une table publiée par Heiskanen pour l'application de la théorie d'Airy [9] (Table de réduction, I, pp. 140-145) pour des profondeurs de compensation de 40, 60, 80 et 100 km., la différence de densité entre la croûte et le substratum étant supposée 0,6. Pour les zones K, L, M, N, et O l'argument de ces tables est la hauteur moyenne de tous les compartiments dans une de ces zones. Les zones de A-J sont traitées comme une seule zone pour la profondeur de compensation T = 40 km.; de même les zones A-K sont assimilées à une zone unique pour T = 60, 80 et 100 km. Dans ces deux cas l'argument des tables est la hauteur moyenne des zones de A-J ou de A-K, calculée comme il a été indiqué précédemment. Afin de tenir compte de la présence de l'eau de mer, les profondeurs de mer sont multipliées par 0,615 avant de prendre la moyenne des hauteurs des compartiments d'une zone ou des zones elles-mêmes. Pour le calcul de l'influence de la compensation dans l'hypothèse de Pratt, E. C. Bullard a modifié les tables dressées par Hayford, de manière à utiliser comme argument des tables la hauteur moyenne des compartiments appartenant à une même zone ou la hauteur moyenne des zones de A-K. J'ai dressé la table IV à l'aide des relations suivantes :

Attraction de	compensation dans	s les	zones	A-K	$= 0,1690 \ h \times 10^{-4} \ {\rm cm. \ sec^2}.$
,,	-	""			${ m L}=0.0777~h imes10^{-4}$
"		**			${ m M}=0,\!1886~h imes10^{-4}$
**		; ,			$ m N = 0,\!1716 \ h imes 10^{-4}$
,,		,,			$0 = 0,1669 h \times 10^{-4}.$

La petite correction pour la hauteur de la station est supposée être la même que dans l'hypothèse de Heiskanen pour T=60 km.; elle est donnée par la table V, pages 71-72, qui reproduit partiellement la table III, page 148 [9], de Heiskanen.

§ 7. Calcul de l'attraction du relief topographique et de l'influence au delà de la zone O.

L'attraction du relief topographique entre la zone O et les antipodes est incommode à calculer. M. Bullard ne la détermine pas séparément, mais à l'exemple de Hayford, il calcule l'effet combiné du relief topographique et de la compensation. Il utilise dans ce but les tables de Hayford et de Heiskanen. Il remarque d'abord que les zones de 1 à 5 (38°58' à 180° à partir de la station) ont à peu près le même effet pour toute l'Afrique Orientale. Le calcul a été effectué pour un point seulement (lat. 0°, long. 30°); les valeurs obtenues sont :

		$\mathbf{T}_{\mathbf{A}}$	ABLE VI	•	
			:	Heiskanen)
	Hayford	40	60	80	100 km.
Zones 1 à 5	+ 21	+ 14	+21	+29	$+$ 36 \times 10 ⁻⁴ cm./sec ² .

L'effet des zones de 6 à 11 a été calculé pour un certain nombre de points distribués régulièrement sur toute l'aire du levé.

26 M. DEHALU. – LA GRAVIMÉTRIE ET LES ANOMALIES

Ces données ont servi au tracé des lignes d'égales attractions suivant l'hypothèse de Heiskanen, pour H=40 km.; elles sont reproduites dans la figure 7 et ont servi à la détermination des attractions pour les autres points. On en déduit les attractions suivant les autres hypothèses en multipliant les valeurs de la carte par les facteurs suivants :

	Profondeur	
Hypothèses	de la compensation	Facteurs
		<u>.</u>
Hayford	113 ,7 km.	1.40
Heiskanen	60	1.50
	80	2.00
	100	2.40

L'attraction de la zone 12 se déduit de la table VII, page 75, que j'ai calculée à l'aide des tables de Heiskanen [9]. (Tables V_a , V_b , V_c , p. 151.)

L'attraction des zones de 13 à 18 s'obtient à l'aide de la table VII, pages 73-74, reproduite de Heiskanen (*loc. cit.*, pp. 146-147).

Remarquons que pour les zones de 12 à 1, on pourrait procéder comme nous l'avons fait pour la zone 12, c'est-à-dire appliquer la méthode de Hayford, qui consiste à déterminer l'attraction F par la formule

$$\mathbf{F} = \mathbf{C} \times h,$$

C étant un coefficient de proportionnalité correspondant à la somme algébrique de la correction topographique éloignée et de la correction de compensation isostatique. Les valeurs des coefficients C, dans l'hypothèse de Hayford, sont données, pour les zones de 1 à 12, dans la table V_b (p. 151) de Heiskanen. Les valeurs de C, dans l'hypothèse d'Airy, se déduisent aisément des précédentes au moyen des tables V_a et V_c (p. 151).

Heiskanen a indiqué un procédé pour simplifier le calcul ardu des zones de Hayford de 10, 9, 8 et 7 à 1 [4]. (Topographie-isostatie world maps of the effect of the Hayford zones 10, 9, 8 et 7 to 1.) Nous donnons, ci-après, un tableau résumant les calculs des attractions et les influences dues à la compensation pour les diverses zones, puis un exemple extrait du mémoire de M. Bullard et se rapportant à la station n° 53, Moshi.

			Argument des tables	Signe (1)
Attraction	$1.448{ m h} imes 40^{-4}{ m cm}.$ (see, -2	Correction de Bouguer	Hauteur de la Station	+
des	В	Table I	Idem	+
zones $\Lambda = 0$	3	Table II.	$\Delta h = dif$, h^{e} comp ^e Station	ļ
Compensation	Hypothèse Airy	Table 111	Haut, moy, des zones A – J et A – K Zones K, L, N, M et o	
ues zones A – O	Hypothèse Hayford	Table IV	Haut, moy, des zones A – K Zones L, M, N et O	Į
	Correction pour haut, de la Station	Table V	Argt hor. == h' stat. : Argt vert h' zone	1
Attraction	Zones de 1 à 5	Table VI	Pour l'Afrique	- -
compensation	Zones de 6 à 41	Abaque	Latitude et longitude	-11
zones $1-18$	Zones de 12 à 18	Table VII	llauteur de la zone	j
	Somme T + C== Attrac	tion et compensation pour te	ute la terre.	
	$g + D - \gamma_0 = \frac{g - \gamma_a}{g - \gamma} = A$ nom $g - \gamma_a - (T + C) = \frac{g - \gamma_a}{g - \gamma} = A$ nom	alie à l'air libre. D = 0,3086) Alie isostatique.	\times 10 ⁻³ h cm./see 3 . (h en mètres).	
	$\gamma = 978, 03$	$0 (1 \pm 0.005302 \sin^2 \varphi - 0.0000$	07 sin ² 2 φ). Formule de Helmert (1901).	
	Υ = 1978.04	9 $(1 + 0 \ 0052884 \sin^2 \varphi - 0,000$)005 sin² 2 ¢). Formule internationale.	

Ordonnance des calculs.

`

28

M. DEHALU. – LA GRAVIMÉTRIE ET LES ANOMALIES

g == Intensité de la pesanteur observée.

(!) Indépendamment de celui indiqué pour chaque table.

	÷	В	U,	D	ы				-				÷	_	-	_	_			-		-	-				
4 N 0 4 10 9	1139	1139	1139	1139	1200 1200 1200 1150 1050	1250 1250 1250 1250 1200 1 1100	135 1135 1135 1135 1135 1135 1135 1135	0160 0160 0140 0135 0140 0110		165(150(140(125(125($\begin{array}{c} 1950 \\ 1800 \\ 1500 \\ 1200 \\ 1200 \\ 1200 \\ 1200 \end{array}$	1 28 1 24 20 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	00 2 00 2 00 2 00 2 00 00 00 00 00 00 00	4200 3500 2400 1800 1600 1400	4 0 4 7 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0	2150 1450 1000 1000 1000 1000 1200		300 900 200 100 100 100 100 100 100 100 100 1	900 900 600 600 600 600 600 600 600 600	0601	066	1000	086		700 300 100 1600 1600	400 -3300 -2400 200 1200
2084					1050 1150	1 900 900 1100 1150	202020	<u></u>	0000	000 000 000 000		900 120 120	o o o v ta	<u>8666</u>	1200 1100 700		900 1200 900	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 	2000 2000 2000	800000 800000						$^{+500}_{-500}$	1200 1200 1300
1004	Attu	B B	nd di 121 ==	u Pl; 13 × 13	ateau 10-4 (indéfin :m./sec.	1115	<u>00</u> 886110	8888	00000000000000000000000000000000000000	0000	850 1100 1300	~~~~ × × × × × × × × × × × × × × × × ×	00000	202202		$1100 \\ 1500 \\ 2700 \\ 2900 \\ 2900 \\ 1100 \\ 2900 \\ 2900 \\ 1100 \\ $	<u> </u>	2000 2000 1000 1000 1000	000 000 000 000 000 000	· · ·					1400 1300 1300 1500	
8 9 7 8 8 4 9	Attı	C -	Pla = 128	teau 36 × 1 40	à la 10-4 (zone (cm./sec.		13(2 2	1100 1200	000	1800	- 338	838	0000 00000			• <u></u>	1001	1200 1200 1400						1500	
19 20	Attr	racti	on tc 124	р. d 8 Х	e A 10⊸t	à O m./sec.				140	00		55.55	00-1 300-2	130(<u> </u>	1200							
22 23 23 23 23 23 23		· · ·					<u> </u>						<u> </u>	· · · · · · · · · · · · · · · · · · ·	190(320(470(0000				1200 1000 11000 11000 11000							
26 28 28										<u>. </u>										1600 1500 1600							
sennes	1139	1139	1139	1139	1130	3 1105	3 112	2011	30 2	115	1	1225	- 	370 7	1200	0 17	1410	4	120	1090	1090	0 66	1000	980	000	610	350

Hauteurs moyennes des compartiments à la station n° 53, Moshi.

DE LA PESANTEUR EN AFRIQUE ORIENTALE

29

M. DEHALU. — LA GRAVIMÉTRIE ET LES ANOMALIES

		Hauteur	Hayford		Heisl	kanen	
	Zone	m.	$\times 10^{-4}$	40 km. × 10−4	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} 80 \text{ km.} \\ \times 10^{-4} \end{array}$	100 km. ×10-4
Correction pour la hauteur de la station	A B C D E F G H I J K L M N O	1139 1139 1139 1130 1130 1105 1120 1130 1150 1225 1370 1700 1410 1420 1090	- 228 - 132 - 266 - 192 - 182 + 7	A - 53 - 69 - 159 - 380 - 239 - 180 + 11	J = 1185 - K = 1290 - 60 - 91 - 279 - 243 - 224 + 7	m. m. - 36 - 57 - 202 - 219 - 240 + 7	- 22 - 39 - 149 - 185 - 238 + 6
Compensation	A - 0		- 983	- 1068	- 890	- 747	- 627
	18 17 16 15 14 13 12 6-11 1-5	1090 990 1000 980 900 610 350	- 36 - 32 - 33 - 32 - 30 - 32 - 12 + 20 + 21	- 31 - 28 - 27 - 27 - 24 - 24 - 10 + 14 + 14	- 43 - 39 - 38 - 38 - 33 - 36 - 13 + 21 + 21	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	- 54 - 51 - 53 - 53 - 51 - 54 - 54 - 24 + 34 - 36
	T + C	18-1	- 166	- 143	- 198	- 237	- 267
	Тор.	$\mathbf{A} = 0$	+ 1246	+ 1246	+ 1246	+ 1246	+ 1246
$g + D - \gamma_0 =$	$T + C$ $g - \gamma_{\alpha}$		+ 97 + 87	+ 32 + 87	+ 158 + 87	+ 262 + 87	+ 352 + 87
	g — 70		- 10	+ 55	- 71	- 155	- 265
	g — y		- 1,	+ 6	- 7	- 17	- 26

Calcul des attractions à Moshi.

30

§ 8. Calcul des anomalies.

Les valeurs de g observées doivent être, tout d'abord, corrigées de l'influence de l'altitude de la station, abstraction faite de l'attraction du relief topographique. Cette correction additive est donnée par

 $D = 0.3086 \times 10^{-3} h \text{ cm./sec}^2$. (h en mètres).

Si l'on compare la valeur de g ainsi corrigée à la valeur γ fournie par la formule internationale ou une formule équivalente, on obtient l'anomalie dite à l'air libre. Elle est donnée par la relation

Anomalie à l'air libre =
$$g - \gamma_0 + D$$
.

Ainsi, en ce qui concerne la station 53 [8] (p. 503) de Moshi, on trouve :

g (observé) 977.7040 γ_0 (formule de Helmert) - 978.0473 D + 0.3515 anomalie à l'air libre + 82 × 10⁻⁴ ou 8 mgals.

Si l'on retranche de l'anomalie à l'air libre l'attraction du relief topographique des zones de A à O, on obtient l'anomalie dite de Bouguer. Elle vaut :

anomalie de Bouguer = $y - \gamma_0 + D$ - attraction top. des zones A - O.

Pour la station de Moshi [8] (p. 503) :

 $g - \gamma_0 + D = + 82$ attr. top. A - O = -1246 anomalie de Bouguer - 1164 × 10⁻⁴ ou - 116 mgals.

Enfin, en retranchant de l'anomalie à l'air libre l'attraction topographique et l'influence de la compensation pour toute la terre, dans l'une ou l'autre hypothèse envisagée, on obtient l'anomalie isostatique correspondante.

On a, ainsi,

anomalie isostatique (hyp. Hayford) = $g - \gamma_0 + D$ — attr. top. et comp. pour toute la terre.
Le calcul pour Moshi donne :

anomalie isostatique suivant Hayford = $+82 - 97 = -15 \times 10^{-4}$ ou -2 mgals.

L'anomalie de Bouguer est intéressante à considérer parce qu'elle fournit, comme nous le verrons, une information en ce qui concerne la géologie de la région étudiée.

Quant à l'anomalie isostatique, si sa valeur est faible, c'est que la région est en équilibre isostatique approché; si, au contraire, elle est importante, l'équilibre isostatique n'est pas encore atteint; la recherche de la cause de ce déséquilibre est une question de géologie ou de séismologie.

Car, il faut insister sur ce point, les observations de gravité sont impuissantes à elles seules à expliquer l'équilibre ou le déséquilibre d'une région. La gravité, étant l'attraction par les masses de la Terre, est une fonction de ces masses et de leur position par rapport au point d'observation; mais comme il y a une infinité de distributions de masses donnant le même champ d'attraction à la surface de la Terre, le concours de la géologie et de la séismologie sera presque toujours nécessaire pour faire un choix parmi les distributions possibles. A ce point de vue, il est souvent intéressant de comparer les anomalies isostatiques calculées suivant les hypothèses de Hayford, Heiskanen et Vening Meinesz, et pour différentes profondeurs de compensation.

B. – LES ANOMALIES DE LA GRAVITÉ DANS L'AFRIQUE ORIENTALE, d'après E. C. Bullard.

Considérons d'abord les anomalies de Bouguer. Elles représentent l'attraction due à la différence de densité réelle des roches et de celle admise dans le calcul. Ces anomalies contiennent donc toute l'information que les résultats peuvent donner concernant la géologie de l'aire étudiée. Elles sont toutes négatives, excepté à la station côtière de Dar-es-Salam; leur moyenne est — 124 mgals et la plus grande valeur — 227 mgals. Dans la figure 8 on a porté en abscisses les hauteurs des stations gravimétriques et en ordonnées les valeurs des anomalies relevées en ces points. On voit qu'elles sont en corrélation avec la hauteur des stations. La droite passant par la moyenne de tous ces points a pour équation :

anomalies de Bouguer = -0.063 h - 47 (h en mètres).

Si les montagnes étaient creuses, l'anomalie de Bouguer serait égale et de signe contraire à l'attraction du relief topographique.

Comme on peut ici considérer en première approximation la forme du relief comme étant un plateau de niveau avec la station, on a, théoriquement, en supposant un disque indéfini de hauteur h et de densité 2,67 :

anomalie de Bouguer = -0.1118 h,

ce qui est sensiblement le résultat obtenu par l'observation.

On peut donc considérer que le plateau archéen est caractérisé par une déficience de densité qui produit une déficience dans la gravité à peu près égale à l'attraction du relief topographique visible.

3

34 M. DEHALU. – LA GRAVIMÉTRIE ET LES ANOMALIES

Donc, à moins d'admettre que le plateau soit creux, il est isostatiquement compensé.

Il n'en est plus de même au-dessus des fossés (Rift Valley-Graben), où les observations mettent en évidence de larges anomalies négatives.

Considérons d'abord (fig. 9) une section à travers le lac Albert, qui fait partie du fossé occidental; c'est une plaine de 45 km. de largeur, s'étendant du N.-N.-E. au S.-S.-W. et se trouvant à 600 m. au-dessus du niveau de la mer.

Elle est limitée à l'Est par un escarpement de 500 m. et à l'Ouest par des hauteurs escarpées séparant le pied du fossé des hautes régions

du Congo belge, dont beaucoup se trouvent au-dessus de 1.800 m. d'altitude et descendent graduellement vers l'Ouest jusqu'au bassin du Congo.

La courbe supérieure (fig. 9) représente un profil en travers, pris à mi-chemin du lac. Les autres courbes montrent les anomalies à l'air

.

libre, de Bouguer et de Hayford pour toutes les stations du voisinage projetées sur la coupe. Toutes les courbes s'infléchissent vers le fond du fossé. Les anomalies isostatiques de Heiskanen présentent le même caractère; elles sont voisines de celles de Hayford. Il en résulte qu'aucune des hypothèses faites sur la distribution verticale de la compensation ne peut entrer en compte ici. D'ailleurs aucune modification de celles-ci ne saurait s'y appliquer, car les anomalies de Bouguer peuvent se déduire des anomalies isostatiques en ajoutant l'attraction de la compensation. Or, cette attraction est négative et est, pour chacune des hypothèses, numériquement plus grande pour une station du plateau que pour une station située au fond de la vallée. Par suite, si l'anomalie de Bouguer est plus forte négativement pour une station de vallée que pour une station située sur le plateau, la différence des anomalies isostatiques se marquera davantage. Comme les anomalies de Bouguer sont plus fortes négativement dans le fossé que sur le plateau, les anomalies isostatiques présentent des différences plus sensibles encore; c'est ce que montrent les cinq hypothèses isostatiques suivant lesquelles les calculs ont été effectués et doivent être vraies en général.

L'allure de la courbe de Bouguer montre que non seulement le fossé n'est pas compensé, mais que son fond est constitué de matériaux plus légers que s'il avait été découpé dans le plateau archéen, en laissant la compensation inchangée.

E. C. Bullard calcule que cette matière légère doit se trouver à moins de 35 km. de profondeur pour produire les effets observés, mais il estime peu vraisemblable qu'elle se trouve dans le voisinage immédiat de la surface.

En effet, le fond des fossés a la même composition que les rochers du plateau archéen avoisinant, sauf pour le lac Albert, qui est couvert de sédiments d'épaisseur inconnue amenés par la Semliki. Mais pour attribuer l'anomalie de Bouguer à ces apports, il faudrait leur supposer une épaisseur de 2,5 km. pour une densité de 1,8, ce qui est improbable. D'autres faits ont corroboré la supposition que la matière légère est située profondément.

Depuis longtemps on avait compris l'intérêt d'observations gravi-

36 M. DEHALU. - LA GRAVIMÉTRIE ET LES ANOMALIES

métriques au Tanganyka pour l'étude de la tectonique de cette région. En 1899-1900, des observations furent entreprises par le professeur Kohlschütter; neuf de celles-ci se trouvent dans le Sud-Ouest et vingtcinq autres le long de la route Kigoma-Magadi-Moshi-Tanga. Cinq observations ont été faites au Tanganyka, en 1934, par le D' Bullard,

FIG. 10. – Profil en travers des Lacs Tanganyka et Rukwa. + Anomalies de Faye. O Anomalies de Bouguer. • Anomalies isostatiques.

dont trois aux points précédemment occupés par le professeur Kohlschütter.

Dans une contrée traversée par les deux larges fossés que constituent les lacs Léopold (Rukwa) et Tanganyka, on devait s'attendre à trouver des anomalies de gravité intéressantes. D'autant plus que les observations astronomiques et géodésiques effectuées en vue de la mesure de l'arc du 30° méridien traversant cette contrée avaient révélé de fortes déviations de la verticale. En 1935, W. Horsfield [10] fut chargé de compléter les renseignements déjà acquis dans l'Est Africain et en particulier dans la région du Tanganyka. Les résultats des nouvelles observations concordent avec les anciennes et confirment la présence de fortes anomalies négatives dans le fond de ces deux fossés.

A Itewe, qui se trouve sur la ligne du lac Rukwa sur les hautes régions proches de son extrémité Sud-Est et la sépare du lac Nyassa, l'anomalie est — 14 mgals, ce qui est sensiblement la valeur normale sur le plateau. Elle contraste avec les valeurs — 56 et — 61 mgals à Kamsamba et à Iwungu, sur le lac Rukwa, et — 51 mgals à Langenbwy, sur le lac Nyassa. Sitôt qu'on quitte le fossé, soit latéralement, soit longitudinalement, les anomalies disparaissent.

La figure 10, empruntée au mémoire de W. Horsfield, montre l'allure caractéristique des courbes d'anomalies au-dessus des lacs Rukwa et Tanganyka. Elles épousent les lignes du terrain et s'infléchissent au-dessus des deux lacs.

Le profil du lac Magadi (fig. 11) présente une structure analogue aux précédentes, mais plus faible.

De larges anomalies négatives ont été trouvées à Kisumu et sur la côte où il y a aussi probablement un fossé.

La déficience de gravité est donc un trait commun aux fossés de l'Est Africain et l'on peut tenter d'en présenter une explication. Voici celle qu'en donne E. C. Bullard :

Puisque le plateau africain est approximativement en équilibre isostatique, la pesanteur fait partout équilibre aux poussées vers le haut du magma sous-jacent; sous les fossés, au contraire, les forces hydrostatiques ont pris le dessus, en sorte que le fond de ces vallées a une tendance à s'élever. E. C. Bullard rejette l'hypothèse du géologue Gregory qui voit dans les fossés des morceaux de voussoirs d'une arche existant anciennement à l'emplacement des rifts; elle est, en effet, incompatible avec la présence d'anomalies négatives. Il rejette également l'idée de Wegener suivant laquelle les fossés seraient des vallées de rupture formées par des tensions qui, amincissant par étirement la croûte terrestre, y auraient provoqué des fissures. S'il en était ainsi, celles-ci se seraient remplies de matières lourdes et n'auraient pu produire plus de roches légères au-dessous du niveau de la mer que celles existant auparavant. Il est donc impossible d'admettre cette hypothèse. E. C. Bullard se rallie à l'opinion du géologue Wayland, pour qui la formation des fossés serait le résultat d'efforts de com-

FIG. 11. – Magadi Rift. Frec air +; Bouguer (); isostatie ().

pressions horizontales coinçant entre deux failles renversées un lambeau de la croûte terrestre. La figure 12 représente schématiquement ce phénomène. L'auteur soumet cette hypothèse à une étude mathématique que nous ne pouvons reproduire ici; elle complète l'idée de Wayland en suggérant l'existence d'un pli en profondeur accompagné d'une cassure à la partie supérieure.

Quelques stations situées au fond de certains fossés n'accusent

pas de déficience de gravité. C'est notamment le cas pour Kikorongo, situé au niveau du lac George, au pied du Ruwenzori.

L'anomalie de gravité suivant l'hypothèse de Hayford est de +14 mgals. Selon Wayland, le Ruwenzori pourrait être considéré comme une espèce de fossé négatif dont la formation s'expliquerait en supposant que la seconde cassure (fig. 11), au lieu de se produire en A, se serait produite en A'.

Le chevauchement de la partie du plateau, surélevée par l'effort de compression sur la partie restée en place, aurait donné naissance au bloc montagneux que représente actuellement le Ruwenzori. Comme celui-ci est borné à l'Est et à l'Ouest par des fossés, il faudrait imaginer l'existence d'une série plus compliquée de cassures, ce qui n'est pas improbable. Il est clair que l'attraction de matières lourdes sous le Ruwenzori tend à contrebalancer l'attraction de la matière légère située sous le fossé avoisinant et à produire une petite anomalie, résultante positive à une station comme Kikorongo, voisine de la faille entre le fossé et la montagne.

Une étude gravimétrique de la région du Ruwenzori serait à ce point de vue du plus haut intérêt, ainsi d'ailleurs que celle de la région du Kivu. Je les signale tout particulièrement à l'attention de nos milieux scientifiques coloniaux.

40 M. DEHALU. - LA GRAVIMÉTRIE ET LES ANOMALIES

E. C. Bullard a encore étudié la région des fossés orientaux de Naivasha et Eyassi, où de petites anomalies ont été relevées. Nous n'insisterons pas sur ce sujet et nous renvoyons au mémoire original le lecteur désireux d'approfondir la question du mode de formation des fossés dans cette région.

Le grand géologue Suess [11] supposait qu'il était analogue à celui de la mer Rouge, de la mer Morte et des Chotts. Selon lui, depuis le 15° ou 16° degré de latitude Sud jusqu'au 35° degré de latitude Nord, on observe des lignes de fractures importantes suivant la direction du méridien, le long desquelles s'échelonnent le Nyassa, le Rukwa (lac Léopold), le Tanganyka, plus à l'Est le lac Manyara, puis, à partir du 3° parallèle, le grand fossé qui va jusqu'à l'extrémité Sud du massit abyssin, passe par le lac de Natron, effleure le Naivasha par l'Ouest, le Baringo par l'Est, passe par le lac Rodolphe et se prolonge par la mer Rouge et le Jourdain jusqu'au Taurus. Il concluait [11] (p. 543) :

« ... l'ensemble offre bien plutôt l'apparence d'une zone de fragmentation en éclats ou en voussoirs allongés : on dirait qu'une fente existant à une grande profondeur s'est émiettée vers la surface en un réseau de longues fêlures entrecroisées et que les débris et fragments ainsi produits se sont affaisés tous ensemble, mais à une profondeur inégale. Des laves et des cendres auraient ensuite surgi entre ces décombres, nivelant le fond de la fosse et isolant les cuvettes où l'on trouve les lacs d'aujourd'hui. »

Depuis l'époque où le grand géologue a décrit d'une façon si saisissante la tectonique de l'Est Africain, des observations géologiques plus détaillées ont permis d'éclaircir davantage le mode de formation des fossés. Mais aucune d'elles n'a peut-être fourni d'argument plus décisif sur l'origine de leur formation que les mesures gravimétriques du D^r Bullard et de ses collaborateurs. C'est ce qui ressortira davantage des travaux qui, sous sa direction, ont été poursuivis dans le Soudan et dans la région de la mer Rouge.

Les mesures de von Triultzi et Vening Meinesz [7] avaient montré que la gravité est plus grande que la normale au-dessus de la mer Rouge, formant ainsi un contraste marqué avec les anomalies négatives trouvées au-dessus des fossés africains. Il était donc intéressant de déterminer les anomalies dans le Soudan loin de la côte, afin de se rendre compte si l'aire des excès de gravité était confinée à la mer Rouge ou si elle s'étendait à l'intérieur des terres. Des observations gravimétrique furent entreprises par D. F. Munsey [12], le long de la ligne de Khartoum à Suakim, dont le profil est représenté figure 13.

Dans toute la région située à l'Ouest de la mer Rouge, les anomalies de Bouguer sont systématiquement négatives et sont en corré-

lation avec la hauteur de la station, tandis que les anomalies à l'air libre et isostatiques sont faibles. On peut donc en conclure que le plateau du Soudan et les montagnes de la mer Rouge sont en équilibre isostatique. Au-dessus de la mer Rouge, les stations de Vening Meisnesz, numérotées 12, 13 et 14, donnent des anomalies de Bouguer de +90, +79 et +60 mgals et de anomalies de Hayford de +73, +48 et +69 mgals.

L'explication la plus rationnelle est qu'il y a un déséquilibre isostatique et que sous la mer Rouge se trouve une masse de roches lourdes. C'est exactement l'opposé de ce qui a été trouvé en Afrique Orientale. C'est aussi l'opposé de ce qui a été trouvé dans le golfe d'Agaba où les quatre stations de von Truiltzi indiquent des anomalies de — 30 mgals en moyenne. Il est donc difficile d'admettre que la mer Rouge fut réellement formée en même temps et par le même processus que les fossés africains et le golfe d'Agaba.

L'anomalie positive s'accorde mieux avec la théorie esquissée par Suess, et plus tard par Wegener, qui supposait que la mer Rouge est une crevasse produite par tension, qui s'est remplie de matière lourde venant des profondeurs.

Ce n'est là qu'une simple suggestion qui n'a pas le caractère d'évidence de l'explication adoptée pour la formation des fossés. Mais la conclusion principale est que la mer Rouge a une origine différente de celle des fossés africains.

Cet exposé, fortement résumé, me paraît néanmoins suffisant pour montrer tout le parti que la géologie peut tirer des observations gravimétriques.

Mais je voudrais montrer, pour terminer, les avantages que peut en retirer la géodésie et, par suite, la cartographie coloniale.

C. – LA GRAVIMÉTRIE ET LES TRIANGULATIONS GÉODÉSIQUES.

§ 1. Théorème de Stokes.

Tout d'abord, il est bien certain que l'ensemble des observations gravimétriques faites sur un vaste territoire peut contribuer, notamment, à étendre nos connaissances sur la figure de la Terre. Il me paraît intéressant de noter que les observations dans l'Est Africain et l'Égypte. du D^r Bullard et de ses collaborateurs, ont contribué à rendre peu probable l'existence d'un ellipsoïde terrestre à trois axes inégaux, comme je l'ai indiqué ailleurs avec quelques détails [13]. On me permettra de ne pas y revenir ici. Mais nous avons dit, au début de ce travail, que la formule de Clairaut permet de déterminer l'anomalie apparente, sinon l'anomalie vraie de la gravité en un point, et qu'un théorème célèbre, établi par Stokes [14] en 1849, permet de trouver directement la distance AM = N (fig. 4) entre l'ellipsoïde de référence et le géoïde ainsi que l'angle ε des normales à ces deux surfaces, c'est-à-dire la déviation de la verticale au point considéré.

Un résumé fort succinct du mémoire de Stokes a paru dans Survey India Geodetic Report, vol. VIII, pp. 86 à 91. C'est une reproduction littérale des passages essentiels du mémoire original. L'exposé que nous donnons ci-après se rapporte également aux parties essentielles dont nous avons repris les démonstrations et développé les calculs lorsque nous l'avons jugé nécessaire à la compréhension du texte.

La première partie du mémoire de Stokes se rapporte à la démonstration de la formule de Clairaut au moyen des fonctions de Laplace. Tisserand en a donné un exposé fort complet dans le cas où la Terre peut être assimilée à un ellipsoïde de révolution [TISSERAND, Mécanique céleste, t. II, chap. XVIII, pp. 291 à 302].

J. de Graaf Hunter, directeur du Service géodésique des Indes anglaises, a confirmé la validité du théorème de Stokes par une voie nouvelle [15] en déduisant le potentiel d'attraction de la Terre d'une extension d'un théorème dû à Green.

Stokes établit d'abord l'attraction d'un sphéroïde peu différent d'une sphère sur un point extérieur M (¹). L'origine O des coordonnées étant supposée intérieure au corps, soient r, θ et φ , les coordonnées du point attiré M; r', θ' et φ' , les coordonnées d'un point quelconque M' du corps attirant; dm', l'élément de masse M'; $d\tau'$, l'élément de volume et ϱ , sa densité cubique. Posons

$$0M = r$$
, $0M' = r'$ et $MM' = \Delta$.

Puisque M est extérieur au corps, on a r > r' et

$$\frac{1}{\Delta} = \frac{1}{r} + P_1 \frac{r'}{r^2} + P_2 \frac{r'^2}{r^3} + \dots + P_n \frac{r'^n}{r'^{n+1}},$$

où P_n est le polynome de Legendre d'ordre n. On a, en outre, pour le potentiel attirant,

$$\mathbf{V} = \int \frac{d\,m'}{\Delta} = \int \boldsymbol{\rho} \frac{d\,\boldsymbol{\tau}'}{\Delta},$$

l'intégrale s'étendant à tout le corps.

^{(&}lt;sup>1</sup>) Ce qui peut se justifier en imaginant, par exemple, une terre en équilibre isostatique. On supprime ainsi par la pensée les masses extérieures au géoïde.

44 M. DEHALU. -- LA GRAVIMÉTRIE ET LES ANOMALIES

On sait que la série

$$V = \int \rho \frac{d\tau'}{\tau} + \int \rho P_{i} \frac{r'}{\tau'} d\tau' + \dots + \int \rho P_{n} \frac{r'^{n}}{\tau'^{n+1}} d\tau'$$
(1)

est uniformément convergente; si nous posons

$$\mathbf{Y}_{n} = \int \rho \mathbf{P}_{n} r^{\prime n} d\tau' = \int_{0}^{\pi} \sin \theta' d\theta' \int_{0}^{2\pi} \mathbf{P}_{n} d\varphi' \int_{0}^{\mathbf{R}} \rho r^{\prime n+\epsilon} dr', \qquad (2)$$

où R désigne la portion du rayon vecteur r' comprise entre l'origine O et la surface du corps, l'équation (1) s'écrira

$$\mathbf{V} = \frac{\mathbf{Y}_0}{r} + \frac{\mathbf{Y}_1}{r_2} + \dots + \frac{\mathbf{Y}_n}{r^{n+1}},\tag{3}$$

qui est l'équation (7) du mémoire de Stokes.

Supposons maintenant que toutes les couches de même densité soient à peu près sphériques; on pourra écrire

$$r' = a(1 + u'),$$
 (4)

a étant un paramètre variable d'une couche à l'autre et u' une fonction de θ' , φ' et a.

La fonction u' des deux variables θ' et φ' peut être développée en une série de fonctions de Laplace, et l'on aura

$$u' = u'_0 + u'_1 + u'_2 + \dots + u'_n.$$
⁽⁵⁾

De (2) on tire

$$\mathbf{Y}_{0} = \int_{0}^{\pi} \sin \theta' \, d\theta' \int_{0}^{2\pi} d\varphi' \int_{0}^{a} \rho \, r'^{2} dr' = \rho \, v, \tag{6}$$

v étant le volume correspondant au paramètre a. Or (6) peut s'écrire

$$v = \frac{1}{3} \int_{0}^{a} \int_{0}^{\pi} \int_{0}^{2\pi} \frac{\partial r^{\prime 3}}{\partial a} da \sin \theta' d\theta' d\varphi',$$
(7)

et (4),

$$d^{\prime 3} = a^{3}(1 + 3u_{0}') + 3a^{3}(u_{1}' + u_{2}' + ...).$$

Substituant cette valeur dans (7), il vient

$$v = \frac{1}{3} \int_{0}^{a} da \frac{\partial}{\partial a} \int_{0}^{\pi} \int_{0}^{2\pi} a^{3} [1 + 3u_{0}' + 3(u_{1}' + u_{2}' + ...)] \sin \theta' d\theta' d\varphi'.$$
(8)

Mais on a

$$\int_{0}^{\pi} \int_{0}^{2\pi} u_{1}' \sin \theta' d\theta' d\varphi' = 0$$

$$\int_{0}^{\pi} \int_{0}^{2\pi} u_{2}' \sin \theta' d\theta' d\varphi' = 0$$

$$\int_{0}^{\pi} \int_{0}^{2\pi} \sin \theta' d\theta' d\varphi' = 4\pi.$$
(9)

L'équation (8) se réduit donc à

$$v = \frac{4}{3}\pi \int_{0}^{a} \frac{\partial}{\partial a} [a^{3}(1+3u_{0}')] da = \frac{4}{3}\pi a^{3}(1+3u_{0}').$$
(10)

Si nous prenons pour paramètre *a*, le rayon de la sphère ayant même volume que celui renfermé à l'intérieur de la couche, nous devons avoir

$$v = \frac{4}{3}\pi a^3. \tag{11}$$

En comparant (10) et (11), on trouve $u'_0 = 0$. Par suite, si nous désignons maintenant par *a* le paramètre correspondant à la surface de la terre et par u_i les valeurs que prennent les u'_i à cette même surface, on aura

$$r = a (1 + u_1 + u_2 + \dots + u_n).$$
⁽¹²⁾

Pour les points de la surface terrestre, on a

$$V + \frac{1}{2} \omega^2 r^2 \sin^2 \theta = \text{cte.}$$
(13)

Si la surface terrestre était sphérique et si la Terre n'avait pas de mouvement de rotation, V serait indépendant de θ' et φ' et le second membre de (3) serait réduit à son premier terme. Alors, puisque la force centrifuge est une petite quantité de premier ordre aussi bien que u, les termes successifs doivent être de petites quantités de premier ordre; de sorte que, en substituant dans (2) la valeur de r, donnée par (12), on peut, sans inconvénient, remplacer r par a dans ces termes. Puisque le second terme de (13) est une petite quantité du premier ordre, on peut, de même, remplacer dans ce terme r par a. De (2). (12) et (13) on tire en omettant les carrés de petites quantités

$$\frac{\gamma_0}{a}(1-u_1-u_2-...)+\frac{Y_1}{a^2}+\frac{Y_2}{a^3}+...+\frac{\omega^2a^2\sin^2\theta}{2}=c.$$
 (14)

Dans cette expression, la fonction de Laplace la plus générale d'ordre zéro est une constante et celle d'ordre deux contient $\frac{1}{3}$ — cos² θ ; mais comme

$$\sin^2\theta = \frac{2}{3} + \left(\frac{1}{3} - \cos\theta\right),$$

la constante $\frac{2}{3}$ peut être considérée comme faisant partie de la fonction de Laplace d'ordre zéro. On a donc pour (14) $\frac{1}{a} \left[Y_0 + \frac{Y_1}{a} + \frac{Y_2}{a^2} + \dots \right] - \frac{Y_0}{a} \left[u_1 + u_2 + \dots \right] + \frac{1}{3} \omega^2 u^2 + \left(\frac{1}{3} - \cos^2 \theta \right) \frac{\omega^2 u^2}{2} - c = 0, \quad (15)$

expression de la forme

$$W'_0 + W'_1 + W'_2 + \dots = 0,$$
 (16)

 W'_{i} étant une fonction de Laplace d'ordre *i*. Or, cette expression étant vraie pour toutes les valeurs de θ' et φ' , on doit avoir $W'_i = 0$.

En effet, multiplions (16) par $P_n \sin \theta' d\theta' d\varphi'$ et intégrons dans les limites fixées précédemment; il vient

$$\int_{0}^{\pi} \int_{0}^{2\pi} W'_{i} P_{n} \sin \theta' d\theta' d\varphi' = 0 \quad \text{pour } i \neq n,$$
$$\int_{0}^{\pi} \int_{0}^{2\pi} W'_{n} P_{n} \sin \theta' d\theta' d\varphi' = \frac{4\pi}{2\pi + 1} W_{n}.$$

et

$$\int_{0}^{\pi}\int_{0}^{2\pi}\mathbf{W}_{n}'\mathbf{P}_{n}\sin\theta'd\theta'd\varphi'=\frac{4\pi}{2n+1}\mathbf{W}_{n}.$$

Cette dernière valeur substituée dans (16) donne $W_n = 0$ et par suite $W'_n = 0$, quels que soient θ' et φ' . Égalons donc à zéro les fonctions de Laplace de même ordre dans l'équation (15); il vient

$$\frac{Y_{0}}{a} + \frac{1}{3}\omega^{2}a^{2} - c = 0 \qquad d'o\dot{u} \qquad Y_{0} = ac - \frac{1}{3}\omega^{2}a^{3} \\
- \frac{Y_{0}}{a}u_{1} + \frac{Y_{1}}{a^{2}} = 0 \qquad Y_{1} = aY_{0}u_{1} \\
- \frac{Y_{0}}{a}u_{2} + \frac{Y_{2}}{a^{3}} + \left(\frac{1}{3} - \cos^{2}\theta\right)\frac{\omega^{2}a^{2}}{2} = 0 \qquad Y_{2} = a^{2}Y_{0}u_{2} - \frac{\omega^{2}a^{5}}{2}\left(\frac{1}{3} - \cos^{2}\theta\right) \\
- \frac{Y_{0}}{a}u_{3} + \frac{Y_{3}}{a_{4}} = 0 \qquad Y_{3} = a^{3}Y_{0}u_{3}$$
(17)

La première équation donne une relation entre les constantes arbitraires Y_0 et c, et les autres équations déterminent Y_1 , Y_2 , Y_3 , etc.; substituant ces valeurs dans (3), il vient

$$\mathbf{V} = \mathbf{Y}_{0} \left(\frac{1}{r} + \frac{a}{r^{2}} u_{1} + \frac{a^{2}}{r^{3}} u_{2} + \dots \right) - \frac{\omega^{2} a^{5}}{2 r^{3}} \left(\frac{1}{3} - \cos^{2} \theta \right), \tag{18}$$

ce qui est l'équation (10) de Stokes.

Supposons maintenant que g soit l'accélération de la pesanteur en un point de la surface de la Terre, dn un élément de la normale menée extérieurement à ce point et dr un élément du rayon vecteur. Comme l'angle entre la normale et le rayon vecteur est petit, son cosinus est très sensiblement égal à l'unité et l'on a

$$g = -\frac{d}{dn}(\mathbf{V} + \frac{1}{2}\omega^2 r^2 \sin^2 \theta) = -\frac{d}{dr}(\mathbf{V} + \frac{1}{2}\omega^2 r^2 \sin^2 \theta); \tag{19}$$

ďoù

$$g = \frac{Y_0}{r_2} \left[1 + \frac{2a}{r} u_1 + \frac{3a^2}{r^2} u_2 + \dots \right] - \frac{3}{2} \omega^2 \frac{a^5}{r_4} \left(\frac{1}{3} - \cos^2 \theta \right) + \omega^2 r \sin^2 \theta$$

En remplaçant r par sa valeur (12), il vient

$$g = \frac{Y_0}{a^2} (1 - 2u_1 - 2u_2 - 2u_3 - ...) (1 + 2u_1 + 3u_2 + 4u_3 + ...) - \frac{3}{2} \omega^2 a \left(\frac{1}{3} - \cos^2 \theta\right) - \omega^2 a \left(\frac{2}{3} + \frac{1}{3} - \cos^2 \theta\right),$$

ou encore

$$g = \frac{Y_0}{a^2} - \frac{2\omega^2 a}{3} + \frac{Y_0}{a^2} \left(u_2 + 2u_3 + 3u_4 + \dots \right) - \left(\frac{1}{3} - \cos^2 \theta \right) \left(\frac{3}{2} \omega^2 a + \omega^2 a \right).$$
(21)

Posons

$$\frac{\mathbf{Y}_0}{a^2} - 2\frac{\mathbf{\omega}^2 a}{3} = \mathbf{G}$$
(22)

et

$$\frac{\omega^2 a}{G} = m; \tag{23}$$

l'équation (21) s'écrira

$$g = G \left\{ 1 + \frac{Y_0}{a^2 G} \left(u_2 + 2 u_3 + 3 u_4 + \dots \right) - \frac{5}{2} \frac{\omega^2 a}{G} \left(\frac{1}{3} - \cos^2 \theta \right) \right\}$$

ou, puisque Y_0 vaut approximativement a^2G ,

$$g = G\left\{1 + u_2 + 2u_3 + 3u_4 + \dots - \frac{5}{2}m\left(\frac{1}{3} - \cos^2\theta\right)\right\}.$$
 (24)

Dans cette expression G est la valeur moyenne de g prise sur toute la surface. En effet, s'il en est ainsi, on a

$$g = G \int_{\mathfrak{d}}^{\mathfrak{r}} \int_{\mathfrak{d}}^{2\pi} (1 + u_1 + u_2 + ...) \sin \theta' d\varphi' d\theta'.$$

Or, on sait que

$$\int_{0}^{\pi}\int_{0}^{2\pi}u_{n}\sin\theta'd\theta'd\varphi'=0 \quad \text{pour} \quad n\neq 0,$$

tandis que

$$\int_{0}^{\pi}\int_{0}^{2\pi}\sin\theta'd\theta'd\varphi'=4\pi,$$

ou surface de la sphère de rayon unitaire; donc

$$G = \frac{g}{4\pi}.$$
 (25)

L'équation (24) fait connaître la variation de la gravité quand la surface est donnée, celle-ci étant supposée une surface d'équilibre; inversement, (12) donne la forme de la surface, si la variation de la gravité est connue.

Si nous supposons que la surface de la Terre puisse être représentée avec suffisamment de précision par un sphéroïde aplati de faible ellipticité, ayant son axe de figure en coïncidence avec l'axe de rotation de (12), il vient

$$r = a \left\{ \mathbf{1} + \varepsilon \left(\frac{1}{3} - \cos^2 \theta \right) \right\}$$
(26)

où ε est une constante qui peut être considérée comme égale à l'ellipticité; nous avons donc pour l'équation (24), dans le cas où $u_1 = 0$, $u_2 = \varepsilon \left(\frac{1}{3} - \cos^2 \theta\right)$ et $u_n = 0$ pour n > 2,

$$g = G \left\{ 1 - \left(\frac{5}{2}m - \varepsilon\right) \left(\frac{1}{3} - \cos^2 \theta\right) \right\},\tag{27}$$

équation qui contient celle de Clairaut.

Posons maintenant

n tire

$$g = g_c + \Delta g, \quad r = r_c + a \Delta u;$$

$$\Delta g = G \{ \Delta u_2 + 2 \Delta u_3 + 3 \Delta u_4 + \dots \}.$$
(28)

de (24) on tire

Posons

$$\Delta u_n = \frac{v_n}{n-1}, \qquad \Delta u = \sum_{n=2} \frac{v_n}{n-1}; \qquad (29)$$

il vient pour (28)

$$\Delta g = G \{ v_2 + v_3 + v_4 + \dots \} = G \sum_{n=2} v_n = G F(\theta' \varphi').$$
(30)

 v_n étant une fonction de θ' et φ' , on a, en vertu d'un théorème connu des fonctions sphériques [Potentiel d'une couche sphérique, ou TISSERAND, Mécanique céleste, p. 285],

$$v_n = \frac{2n+1}{4\pi} \int_0^{\pi} \int_0^{2\pi} \mathbf{F}(\theta\varphi) \mathbf{P}_n \sin\theta d\theta d\varphi.$$
(31)

Substituons cette valeur dans (29); il vient

$$4\pi\Delta u = \int_{0}^{\pi} \int_{0}^{2\pi} F(\theta\varphi) \sum \left[\frac{2n+1}{n-1}P_{n}\right] \sin\theta d\theta d\varphi.$$
(32)

Désignons par f l'expression entre crochets

γ

$$f = \sum \left[\frac{2n+1}{n-1} \mathbf{P}_n \right]$$

et considérons la série

$$= \sum \left[\frac{2n+1}{n-1} \zeta^{n-1} \mathbf{P}_n \right], \tag{33}$$

où

 $\zeta = \frac{r'}{r};$

il vient, n étant supposé plus grand que 2,

$$\frac{d\gamma}{d\varphi} = \sum (2n+1)\zeta^{n-2}P_n = 5P_2 + 7\zeta P_3 + 9\zeta^2 P_4 + 11\zeta^3 P_5 + \cdots.$$
(34)

Supposons maintenant que ψ soit l'angle entre les rayons vecteurs r et r'; alors

$$[1 - 2\zeta \cos \psi + \zeta^2]^{-\frac{1}{2}} = P_0 + P_1\zeta + P_2\zeta^2 + \dots$$
(35)

et

$$\frac{1}{2}\int_{0}^{\zeta} \zeta_{2}^{\frac{3}{2}} \frac{d\gamma}{d\zeta} d\zeta = \zeta_{2}^{\frac{5}{2}} P_{2} + \zeta_{2}^{\frac{7}{2}} P_{3} + \zeta_{2}^{\frac{9}{2}} P_{4} + \dots + \zeta_{2}^{\frac{2n-4}{2}} P_{n} \\
= \zeta_{1}^{\frac{1}{2}} [\zeta_{2}^{2} P_{2} + \zeta_{3}^{3} P_{3} + \zeta_{4}^{4} P_{4} + \dots \zeta_{n}^{n} P_{n}] \\
= \zeta_{1}^{\frac{1}{2}} \left[\frac{1}{\sqrt{1 - 2\zeta \cos \psi + \zeta_{2}^{2}}} - P_{0} - P_{4} \zeta \right] = \sqrt{\zeta} Z.$$
(36)

49

On a donc

$$\frac{1}{2}\zeta^{\frac{3}{2}}\frac{d\gamma}{d\zeta} = \frac{d}{d\zeta}(Z\sqrt{\zeta});$$

$$\gamma = 2\int \zeta^{-\frac{3}{2}}d(Z\sqrt{\zeta}),$$
(37)

öu

ďoù

$$\gamma = 2 \int_{0}^{\zeta} \frac{dZ}{\zeta} + \int_{0}^{\zeta} \frac{Zd\zeta}{\zeta^{2}}.$$
 (38)

Le premier terme s'intègre par parties en posant

$$u=2\zeta^{-1}, \qquad dv=d\mathbf{Z};$$

ce qui donne

$$2\int_{0}^{\zeta} \frac{dZ}{\zeta} = 2\left[\frac{Z}{\zeta}\right]_{0}^{\zeta} + 2\int_{0}^{\zeta} \frac{Z}{\zeta^{2}}d\zeta;$$
(39)

d'où, pour (38), en remarquant que γ s'annule avec $\zeta,$

$$\gamma = \frac{2Z}{\zeta} + 3 \int_{0}^{\zeta} \frac{Z}{\zeta^{2}} d\zeta. \qquad (40)$$

Pour trouver la valeur de l'intégrale contenue dans le second membre de (40), Stokes opère le changement de variable

$$w = \mathbf{R} + \boldsymbol{\zeta}, \tag{41}$$

où

$$R = \sqrt{1 - 2\zeta \cos \psi + \zeta^2}$$
(42)

et

$$Z = \frac{R}{1} - 1 - \zeta \cos \phi. \tag{43}$$

Élevant au carré les deux membres de l'équation (41), on trouve

$$\zeta = \frac{w^2 - 1}{2(w - \cos \psi)};\tag{44}$$

ďoù

$$d\zeta = \frac{w^2 + 1 - 2w\cos\psi}{2(w - \cos\psi)^2} dw,$$
(45)

$$R = \frac{w^2 + 1 - 2w\cos\psi}{2(w - \cos\psi)}, \quad Z = \frac{2(w - \cos\psi)}{w^2 + 1 - 2w\cos\psi} - 1 - \cos\psi\frac{w^2 - 1}{2(w - \cos\psi)}, \quad (46)$$

On en déduit

$$\zeta^{-2}Zd\zeta = \frac{4(w - \cos\psi)dw}{(w^2 - 1)^2} - \frac{2(w^2 + 1 - 2w\cos\psi)}{(w^2 - 1)^2}dw - \frac{\cos\psi(w^2 + 1 - 2w\cos\psi)}{(w - \cos\psi)(w^2 - 1)}dw.$$
(47)

Les deux premiers termes de (47) peuvent s'écrire

$$-\frac{2(2\cos\psi+1)dw}{(w^2-1)^2}+\frac{4(1+\cos\psi)dw}{(w^2-1)^2}-\frac{2w^2}{(w^2-1)^2}dw.$$

Leurs intégrales valent

$$\begin{pmatrix} 2\cos\psi+1 \end{pmatrix} \begin{bmatrix} \frac{w}{w^2-1} - l \cdot \frac{w+1}{\sqrt{w^2-1}} \end{bmatrix} - \frac{(1+\cos\psi)(1+w^2)}{(w^2-1)} \\ + \frac{w}{w^2-1} - \frac{1}{2}l\frac{w-1}{w+1}.$$
 (48)

Pour intégrer le troisième terme de (47), posons

$$-\cos\psi \frac{w^2 - 2w\cos\psi + 1}{(w - \cos\psi)(w^2 - 1)} = -\cos\psi \left[\frac{A}{w - \cos\psi} + \frac{Bw}{w^2 - 1}\right];$$

en égalant les numérateurs, on trouve

$$A = -1 \quad \text{et} \quad B = 2;$$

l'intégrale proposée vaut donc

$$\cos\psi l \frac{w - \cos\psi}{w^2 - 1}.$$
(49)

.

Groupons les termes de (48) et (49) sans logarithmes et avec logarithmes. Les premiers donnent

$$\frac{(2\cos\psi+1)w - (1+\cos\psi)(1+w^2) + w}{w^2 - 1} = -\frac{(1+\cos\psi)(w-1)}{w+1};$$

les seconds donnent

$$-(2\cos\psi+1)l\frac{w+1}{\sqrt{w^2-1}}-\frac{1}{2}l\frac{w-1}{w+1}+\cos\psi l\frac{w-\cos\psi}{w^2-1},$$

ou

$$-2\cos\psi l(w+1) - l(w+1) + \cos\psi l(w-1) + \cos\psi l(w+1) + \frac{2}{1}l(w-1) + \frac{1}{2}l(w+1),$$

$$-\frac{1}{2}l(w-1) + \frac{1}{2}l(w+1) + \cos\psi l(w-\cos\psi) - \cos\psi l(w+1) - \cos\psi l(w-1),$$

ou encore

$$-2\cos\psi l(w+1)+\cos\psi l(w-\cos\psi).$$

52 M. DEHALU. – LA GRAVIMÉTRIE ET LES ANOMALIES

Finalement l'intégrale de (47) vaut

$$\int_{0}^{\zeta} \zeta^{-\frac{1}{2}} Z d\zeta = \left[-(1 + \cos \psi) \frac{w - 1}{w + 1} - 2 \cos \psi l(w + 1) + \cos \psi l(w - \cos \psi) \right]_{w=t}^{w}$$

$$= -(1 + \cos \psi) \frac{w - 1}{w + 1} - 2 \cos \psi l(w + 1) + \cos \psi l(w - \cos \psi)$$

$$+ 2 \cos \psi l 2 - \cos \psi l(1 - \cos \psi)$$

$$= \cos \psi l \frac{w - \cos \psi}{1 - \cos \psi} - (1 + \cos \psi) \frac{w - 1}{w + 1} - 2 \cos \psi l \frac{w + 1}{2}$$
(50)

qui est la valeur donnée par Stokes, p. 694, 4° ligne.

.

La valeur de ζ qui nous intéresse spécialement est $\zeta = 1$; dans ces conditions

$$Z = (2 - 2\cos\psi)^{-\frac{1}{2}} - (1 + \cos\psi), \qquad w = 1 + 2\sin\frac{\psi}{2}$$

i.

et l'équation (50) s'écrira

$$\int_{0}^{\zeta} \zeta^{2} Z d\zeta = \cos \psi l \frac{1 + 2\sin \frac{\psi}{2} - \cos \psi}{2\sin^{2} \frac{\psi}{2}} - \left(1 + \cos \psi\right) \frac{\sin \frac{\psi}{2}}{1 + \sin \frac{\psi}{2}} - 2\cos \psi l \left(1 + \sin \frac{\psi}{2}\right)$$
$$= -\cos \psi l \left(\sin \frac{\psi}{2} \left(1 + \sin \frac{\psi}{2}\right)\right) - 2\sin \frac{\psi}{2} \left(1 - \sin \frac{\psi}{2}\right).$$

Faisant $\zeta = 1$ dans (33), on trouve comme valeur de f, en tenant compte de (40) et (50),

$$f = \frac{2}{\sqrt{2 - 2\cos\psi}} - 2 - 2\cos\psi - 6\sin\frac{\psi}{2} + 6\sin^2\frac{\psi}{2} - 3\cos\psi l \left\{\sin\frac{\psi}{2} (1 + \sin\frac{\psi}{2})\right\},$$

ou

$$f = \frac{1}{\sin\frac{\psi}{2}} + 1 - 5\cos\psi - 6\sin\frac{\psi}{2} - 3\cos\psi l \left\{\sin\frac{\psi}{2}\left(1 + \sin\frac{\psi}{2}\right)\right\}.$$
 (51)

Dans l'équation (32) supposons que la direction à partir de laquelle θ est mesuré soit la direction du rayon vecteur passant par une station prise comme origine.

Supposons, en outre, que les angles ψ et χ soient par rapport à cette station ce que θ et φ sont par rapport au pôle Nord; l'équation (32) s'écrira

 $\Delta u = \frac{1}{4\pi} \int_0^{\pi} \int_0^{2\pi} \mathbf{F} \left(\theta \varphi \right) f \sin \psi d \psi d \chi$

et, en vertu de (30) et (31), en remplaçant $F(\theta' \varphi')$, qui actuellement vaut $F(\theta, \varphi)$, par $G^{-1}\Delta g$, il vient

$$\Delta u = \frac{4\pi G}{1} \int_{0}^{\pi} \int_{0}^{2\pi} f \Delta g \sin \psi d\chi d\psi, \qquad (52)$$

où f a pour valeur (51).

Dans la formule (52) le rayon de la Terre a été pris égal à l'unité. En le désignant par R et en posant $\Delta u = N$, distance du géoïde au sphéroïde, on a

$$N = \frac{R}{GS} \int^{S} f \Delta g dS,$$
 (53)

où $S = 4\pi R^2$ est la surface de la sphère et dS un élément de sa surface;

R = le rayon moyen de la Terre;

G = la gravité moyenne, $\Delta g = anomalie de gravité;$

f=fonction de l'angle ψ que font les rayons passant par le point P (station) et l'élément dS.

$$f = \csc \frac{\psi}{2} + 1 - 6 \sin \frac{\psi}{2} - B \cos \psi, \qquad (54)$$

où

$$\mathrm{B}=5+\log_e\sin^3\frac{\psi}{2}+\log_e\left(1+\sin\frac{\psi}{2}\right)^3.$$

De la formule (53) on peut déduire facilement les déviations du fil à plomb dans le sens du méridien et du premier vertical. Si nous utilisons un ellipsoïde de révolution de faible ellipticité, nous pourrons écrire

$$\Delta g = g_0 - \gamma_s,$$

où g_0 est la gravité rapportée au géoïde compensé et γ_s , celle calculée par la formule internationale ou une autre similaire.

Soient O (fig. 14) le point où N = dR doit être déterminé; A le point ou l'anomalie de gravité est Δg ; P_N le pôle Nord de la Terre; χ l'azimut de OA, compté vers l'Est à partir de la direction Nord; ψ l'arc de grand cercle OA; A' un point voisin de O, tel que OA' = δs , et α l'azimut de OA'. Menons A'N perpendiculaire à OA; il vient

$$0 N = 0 A' \cos{(\alpha - \chi)},$$

où

$$ON = -Rd\psi$$
 (déviation vers le Nord),
 $OA' = \delta s.$

Alors

$$-\operatorname{R}\frac{d\Psi}{ds}=\cos\left(\alpha-\gamma\right).$$

Mais on a

$$\lim \frac{\partial \Delta R}{\partial s} = \lim \frac{R}{GS} \int \Delta g \frac{\partial f}{\partial \psi} \frac{\partial \psi}{\partial s} dS$$
$$= -\frac{1}{GS} \int \Delta g \frac{\partial \psi}{\partial f} \cos(\alpha - \chi) dS.$$

Cette équation donne la déviation de la verticale du géoïde dans l'azimut a mesuré du Nord vers l'Est. Les composantes Nord et Est

de la déviation, comptées positivement vers le Sud et l'Ouest, s'obtiennent en faisant respectivement $\alpha = 0$ et $\alpha = 90^{\circ}$ et valent en secondes

$$\eta = -\frac{\operatorname{cosec} 1''}{\mathrm{GS}} \int^{\mathbf{S}} \Delta g \, \frac{df}{d\psi} \cos \chi d\mathbf{S},\tag{55}$$

$$\boldsymbol{\xi} = -\frac{\operatorname{cosec}\,\mathbf{1}''}{\operatorname{GS}} \int^{\mathbf{S}} \Delta g \, \frac{df}{d\psi} \sin \chi d\mathbf{S},\tag{56}$$

où

$$d\mathbf{S} = \mathbf{R}^2 \sin \psi d\psi d\chi.$$

On trouve facilement, en différentiant l'équation (54),

$$\sin \psi \frac{df}{d\psi} = -\cos^2 \frac{\psi}{2} \left\{ \frac{1}{\sin \frac{\psi}{2}} + 12 \sin \frac{\psi}{2} - 32 \sin^2 \frac{\psi}{2} + \frac{3}{1 + \sin \frac{\psi}{2}} - 12 \sin^2 \frac{\psi}{2} \log_e \left[\sin \frac{\psi}{2} \left(1 + \sin \frac{\psi}{2} \right) \right] \right\}.$$
(57)

J. de Graaff Hunter [15] a calculé une table des valeurs de $f \sin \psi$ et $\frac{df}{d\psi} \sin \psi$ pour toutes les valeurs de 5 en 5 degrés de 0 à 180° et une autre pour les valeurs de degré en degré de 0 à 15°; nous les avons reproduites pages 76 et 77, tables A et B.

Pour de petites valeurs de ψ , la formule (57) se réduit à

$$\sin\psi \frac{d\psi}{df} = -\frac{1}{\sin\frac{\psi}{2}} - 3.$$
(58)

Pour exprimer sin $\frac{\Psi}{2}$ en degrés, posons

$$\sin\frac{\Psi}{2} = \frac{\Psi}{2}\sin1^{\circ} = \frac{\Psi}{2} \times 0 \times 0.174524;$$

alors

$$\sin\psi \frac{d\psi}{df} = -\frac{114.6}{\psi^0} - 3.$$
 (59)

Cette formule est valable à 2 % près jusqu'à $\psi = 15^{\circ}$.

§ 2. Arrangement des formules pour le calcul.

On a pour l'élément de surface dS:

$$d\mathbf{S} = \mathbf{R}^2 \sin \psi d\psi d\chi;$$

par suite

$$\int^{\mathbf{S}} \Delta g \, d\mathbf{S} = \int_{0}^{2\pi} \int_{0}^{\pi} \Delta g \, \mathbf{R}^{2} \sin \psi d\psi \, d\chi.$$

Or,

$$\int_{0}^{2\pi} d\chi = 2\pi;$$

ďoù

$$\int_{0}^{S} \Delta g dS = \int_{0}^{\pi} \Delta g 2\pi R^{2} \sin \psi d\psi.$$
 (60)

Remarquons que $2\pi R d\psi$ représente la surface d'une zone sphérique de hauteur $d\psi$. Décrivons donc autour de la station O des circonférences dont les rayons varient de $d\psi$ et divisons les zones ainsi réalisées en compartiments par des rayons issus du centre O. Si l'on a tracé au préalable sur la carte de la région les courbes d'égales anomalies de gravité, il sera possible d'en déduire l'anomalie de chacun de ces compartiments. Désignons par Δ_m la moyenne des anomalies appartenant à la même zone; l'équation (53) s'écrira, en tenant compte de (60),

$$N = \frac{R}{G 4 \pi R^2} \times 2 \pi R^2 \sum_{i}^{k} \left[\Delta_m f \sin \psi \Delta \psi \right],$$

ou

$$N = \frac{R}{2G} \Delta \psi \sum_{i}^{k} [f \sin \psi \Delta_{m}]_{k},$$

k désignant le numéro d'ordre de la zone.

On obtient des formules analogues pour les déviations du fil à plomb :

$$\eta = -\frac{\operatorname{cosec} \mathbf{1}''}{2G} \Delta \psi \sum_{i}^{k} \left[\cos \chi \Delta g \right]_{k} \left[\frac{df}{d\psi} \sin \psi \right]_{k}$$
(61)

$$\xi = -\frac{\operatorname{cosec} \mathbf{1}''}{2G} \Delta \psi \sum_{i}^{k} \left[\sin \chi \Delta g \right]_{k} \left[\frac{d\psi}{df} \sin \psi \right]_{k}, \tag{62}$$

où $\begin{bmatrix} \cos \chi \\ \sin \chi \end{bmatrix}_k$ représente la moyenne pour chaque zone du produit $\Delta g \cos \chi$ ou $\Delta g \sin \chi$ se rapportant à chacun des compartiments de la zone.

Théoriquement, les circonférences tracées autour de la station ont des rayons variant de 0 à 180°, autrement dit, le théorème de Stokes exige la connaissance des anomalies de gravité sur tout le globe. Mais, dans certains cas, on désire connaître l'influence que peuvent exercer sur la station des zones d'anomalies particulièrement élevées et notamment l'effet des zones les plus proches de la station. C'est dans cet esprit que nous appliquerons les formules établies. Soit, par exemple, à trouver la valeur de N pour une zone de 2° de largeur, dont l'anomalie moyenne est de 1 mgal.

On a ici $\psi = 1^{\circ}$, $\Delta \psi = 2^{\circ}$. La table B donne pour F sin ψ la valeur 2.177; on a donc, en exprimant le rayon moyen de la Terre en mètres et en prenant 0.017 comme valeur de sin 1° :

$$\frac{6371229}{2 \times 978049} \times 2.177 \times 2 \times 0.017 = 0^{m}241 \text{ ou } 0.80 \text{ pied},$$

résultat identique à celui donné par B. L. Gulatee [16].

Proposons-nous encore de calculer la déviation méridienne de la verticale pour une zone dont les rayons intérieur et extérieur sont respectivement 0°5 et 1°, la valeur moyenne de $[\Delta g \cos \chi]$ étant 1 mgal.

A cet effet, utilisons la formule approchée

$$\Delta \psi \left[\frac{df}{d\psi} \sin \psi \right] = \left[\frac{114 \cdot 6}{\psi^0} + 3 \cdot 8 \right] \Delta \psi \sin 1^\circ,$$

où nous prendrons

$$\psi^{0} = 0^{\circ}75$$
 et $\Delta\psi \sin 1^{\circ} = 0^{\circ}5 \times 0.017$;

on trouve, puisque

$$\frac{\rho'' \sin 1^{\circ}}{2G} = 0,00184,$$
$$0.00184 \left[\frac{114.6}{0.75} + 3.8 \right] 0.5 = 78.3 \times 0.00184 = 0''14.$$

Enfin, calculons encore la déviation méridienne de la verticale pour une valeur moyenne $[\Delta g \cos \chi] = 1$ mgal. dans une zone limitée par les rayons de 5° et 8°.

On trouve, en appliquant comme précédemment la formule approchée de J. de Graaff Hunter,

$$0.00184 \left[\frac{114.6}{6.5} + 3.8 \right] \times 3 = 0''10.$$

En utilisant la table B, on trouve

$$0.00184 \times 21.205 \times 3 = 0''12.$$

§ 3. Application.

Nous avons fait un essai d'application du théorème de Stokes au calcul de la déviation du fil à plomb dans la région située au Sud du lac Albert (fig. 15), où aboutit l'extrémité Nord de la triangulation anglo-congolaise effectuée en 1908-1909 en vue de la mesure d'un arc de méridien dans le voisinage de l'équateur.

Tous les sommets de cette triangulation dans cette région présentent de fortes déviations, positives ou négatives, dans le sens du méridien. Partant des courbes d'égales anomalies de gravité tracées par E. C. Bullard, faisant en outre des hypothèses plus ou moins plausibles sur la distribution des anomalies de gravité dans les parties dépourvues de mesures et, enfin, en admettant que le Ruwenzori est le siège de larges anomalies positives, nous avons calculé la déviation méridienne du fil à plomb à Muruha. Le tableau des calculs est reproduit ci-après. Nous avons dû nous borner au calcul des zones de 0°-0,5°, 0°5-1°, 1°-1°5 et 1°5-2°, ne possédant aucune indication sur la distribution des anomalies de gravité au delà de cette dernière zone. La déviation ainsi calculée a été trouvée égale à -9″5 au lieu de -16″, ce qui est très satisfaisant, étant donnée la nature même du problème.

En partant des mêmes données, il est également possible de vérifier d'une manière approchée la déviation du fil à plomb déterminée astronomiquement à Oruha (-5"6), Karangora (-19"8), Nkenda (+13"9) et Kabuga (+5"6).

Par contre, il est difficile d'expliquer les déviations positives d'Isura (+20"4) et d'Omunturuk (+9"9) ainsi que les déviations positives mises en évidence par M. L. Hermans dans la région de Kilo-Moto [17], sans supposer l'existence de larges anomalies de gravité positives à l'Ouest et négatives au S.-W. des deux premières stations. Cette hypothèse paraît assez plausible, puisque la plaine de la Semliki s'étend dans la direction S.-W d'Isura.

Quoi qu'il en soit, l'étude gravimétrique du Ruwenzori et de ses abords semble devoir présenter un intérêt tout particulier, étant donnée l'existence d'importantes déviations du fil à plomb et de larges anomalies de gravité dans cette région.

FIG. 15.

.

§ 4. Importance du théorème de Stokes.

Mais le grand intérêt du théorème de Stokes, dont nous venons d'indiquer une application particulière, est qu'il permet de résoudre le problème fondamental de la géodésie, c'est-à-dire la détermination des éléments à l'origine d'un réseau de triangulation : distance en ce point du géoïde au sphéroïde de référence et déviation de la verticale. De cette manière tous les réseaux géodésiques peuvent être rapportés directement au système de référence, sans qu'il soit nécessaire de procéder à leur jonction trigonométrique. Les difficultés que présente ce genre d'opérations sont souvent énormes, voire insurmontables, puisque la jonction des réseaux continentaux ne peut se faire que pardessus les mers. Pour assurer à l'ensemble de notre réseau géodésique colonial une homogénéité parfaite, il faudrait procéder à de nombreuses mesures d'arcs de méridien et de parallèles et rattacher les triangulations aux réseaux des pays voisins C'est là une œuvre gigantesque et de longue haleine dont nous ne saurions prévoir la réalisation, alors que l'application du théorème de Stokes peut apporter une solution simple, précise et rapide à ce difficile problème.

A vrai dire, son application immédiate se heurte actuellement à une difficulté qui n'est pas insurmontable : c'est la connaissance des valeurs de l'intensité de la pesanteur en des points convenablement répartis sur tout le globe.

J. de Graaf Hunter a montré que les observations en 1.654 points répartis sur toute la Terre, à raison d'un point par 5° carrés environ, conduiraient à une incertitude de ± 7 m. seulement sur la distance du sphéroïde au géoïde. Si l'on ajoute à ces 1.654 valeurs une centaine d'autres en des points situés dans un cercle de 15° autour de l'origine du réseau géodésique, l'erreur sur la déviation de verticale en ce point ne dépasserait pas $\pm 0.35''$.

Pour réaliser la première partie de ce programme, J. de Graaff Hunter, lors de la VI[°] Assemblée générale de l'Association internationale de Géodésie et de Géophysique, tenue à Edimbourg en 1936, a fait appel à la collaboration de tous les États.

Calculs	$-0.00184 \begin{bmatrix} 414 \\ -14 \end{bmatrix} 0.5 \times 10.22 = -4^{1/32}$		$-0.00184 \left[\frac{114}{0.75} + 3.8 \right] 0.5 \times 20 5 = -2.93$		$-0.00184 \left[\frac{1.14}{1.25} + 3.8 \right] 0.5 \times 19.0 = -1.66$		$-0.00184 \left[\frac{1.75}{1.75} + 3.8 \right] 0.5 \times 13.8 = -0.88$	Déviation - 9.79												
ne 2º	-22	-55	-46	ו 5	0	າ ເ	-10	-15	-19	-20	-19	-34	-23	- 3	+ 3	*	+11	4	-248	-13.8
4e zo 1º5 —	-22 cos a	-58	-60	-10	0	+15	+20	+20	+20	+20	+20	+45	+45	+20	+20	+15	+15	+ 4		
e ئ	-50	-70	-42	י טר	0	ю 1	-10	-15	-19	-20	-19	-27	-18	ۍ ۱	က် +	0	80 I	-38	-344	-19.0
3° ZOT 1° 1	-50 cos α	-75	-55	-10	0	+15	+20	+20	+20	+20	+20	+35	+35	+20	+15	0 +	-10	-40		
le 1º	-20	-56	-28	9 :	0	، ئ	-10	-15	-19	-20	-19	-15	-10	- 3	0	6 +	-38	-66	-369	-20.5
2° Z01 0°5 —	-70 cos a	-60	-37	-12	0	+15	+20	+20	+20	+20	+20	+20	+20	+15	0 +	+18	-50	-70		
ne •5	-25	-23	-19	ا تر	- 1	- 1	ו זי		6 -	-10	6 -	ອດ ເ	י טי	- 2	82	-10	-19	-23	-184	10.22
1 ^{ere} ZO 0º — 0	-25 cos a	-25	-25	-10	ו סי	+ 57	+10	+10	+10	+10	+10	+10	+10	+10	-10	-20	-25	-25		
cos a	+1.	+0.93969	+0.76604	£.0+	+0 · 17365	-0-17365	-0.5	-0.76604	-0.93969	· - -	-0-93969	-0.76604	2.0-	-0.17365	+0.17365	£.0+	+0 · 76604	+0.93969		
8	0	20	40	09	80	100	120	140	160	180	200	220	240	260	280	300	320	340		

DE LA PESANTEUR EN AFRIQUE ORIENTALE

Muruha.

61

62 M. DEHALU. - LA GRAVIMÉTRIE ET LES ANOMALIES

Déjà, comme nous l'avons dit au début de ce travail, de nombreuses mesures de gravité ont été faites en divers points du globe, principalement dans l'hémisphère boréal; pour l'hémisphère austral et la région équatoriale, nous manquons des données nécessaires.

Il est indispensable que notre Colonie africaine s'intéresse à cette entreprise dont elle peut retirer le plus grand profit pour les travaux géodésiques futurs, et pour l'étude géologique de cette vaste région

La possession d'un grand empire comme le Congo nous crée, au point de vue international, des devoirs auxquels nous ne pourrions nous soustraire sans démériter. Au retour de la paix, nous devons être prêts à apporter notre concours à la réalisation de ce projet, comme d'ailleurs de tous ceux qui réclament une collaboration scientifique internationale. C'est pour nous un devoir impérieux et le plus sûr moyen de nous grandir aux yeux des autres nations, tout en nous conquérant leur estime.

TABI	LE II.
------	--------

Argument, différence des hauteurs de la station et du compartiment

en 10⁻⁴ cm./sec².

m	в	С	D	E	F	G	н	I	J	K	I		М		N		0	
10 20 30 40 50	2 4 6 8 9	1 1 2 3	1										-					
60 80 100 150 200	· · · · · · · · · · · ·	4 7 9 	1 2 2 5 8	1 1 2	1													
250 300 350 400 450	· · · · · · · · · · · ·	· · · · • · · · • · ·	11 14 17 20 23	4 5 7 9 11	$\begin{vmatrix} 1\\2\\2\\3\\4\end{vmatrix}$	1 1 1	1											
500 600 700 800 900	•••• ••• •••	· · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	12 16 20 24 	5 6 8 10 13	2 2 3 4 5	1 1 2 2 3	1 1 1 1 2	1 1 1	1	Station au-dessus		Station au-dessus 1 1	Station en-dessous	Station au-dessus			
1000 1100 1200 1300 1400	• · · · • · · · • · · •	• • • • • • • • • • •	•••• •••• ••••	· · · · · · · · · · ·	15 	6 · 8 9 10 12	$ \begin{array}{c} 3 \\ 4 \\ 4 \\ 5 \\ 6 \end{array} $	2 2 3 3 4	1 2 2 3	1 1 1 2	1 1 1	Station en-dessous 1 1 1	1 1 1 2	1 1 1 1	1 1 1 1		Station au -dessus	
1500 1600 1800 2000 2200	· · · · · · · · · · · · · · · · · · ·	· · · · · · · ·	· • • • • • • • • • • • • • • • • • • •	• • •	· · · · · · · · · · ·	13 15 	7 8 9 11 13	4 5 6 8 9	3 3 4 5 6	2 2 3 3 4	1 1 2 2	1 1 1 2 2	2 2 3 3 4	1 2 2 3	1 1 1 2	Station en-dessous 1 1	1 1 1 1	
2400 2600 2800 3000 3200	· · · · · · · · · ·	· · · · · · · · · ·	· · · • · · • · ·	· · · · · · · ·	• • • • • • • • • •	· · · · · · · · · · ·	15 	11 12 14 16 18	7 9 10 11 13	4 5 6 7 8	3 3 4 4	2 3 3 4 4	5 5 6 7 8		2 2 3 3 3	1 1 1 2 2	1 1 1 1 2	
3400 3600 3800 4000 4200	· · · · · · · · · · ·	•••• •••• ••••	· · · · · · · · · · · · · · · · · · ·	••••	· · · · · · · · · · ·	 	· · · · · · · · · ·	19 21 23 25 27	14 16 17 19 21	9 10 11 12 13	5 6 7 8	4 5 6 7 7	9 10 11 12 13	8 8 9 10 12	4 4 5 5	2 2 3 3 3	2 2 2 2 2	Station en dessous 1

TABLE DE REDUCTION III.

Influence de la compensation dans l'hypothèse de Airy. Zones A à J, K, A à K, L, M. Unité : 0,1 mgal. Altitudes des zones 0 à 5.000 m. Valeurs positives (1).

Н	A à J	К		A à K			I]	M	
m.	T =	Т =	T =	T =	T =	T =	T —	T =	T =	T =	Т —	T =	T =
	40 km.	10 кт.	60 km.	80 km	100 km.	40 km.	60 km.	80 km.	100 km.	40 km.	60 km.	80 km.	100 km.
5000	167	191	190	117	80	385	227	146	101	1203	879	638	473
4900	165	189	187	115	78	379	224	144	99	1183	864	627	465
4800	162	186	184	113	77	373	220	141	97	1162	849	616	457
4700	160	184	181	111	75	368	216	139	96	1142	834	605	449
4600	158	181	178	109	74	362	213	137	94	1121	819	594	441
4500	155	178	175	107	73	356	209	135	93	1101	805	583	432
4400	152	175	172	106	71	350	205	132	91	1079	789	572	424
4300	150	172	169	104	70	344	202	130	89	1058	774	561	415
4200	147	170	166	102	68	338	198	127	87	1037	758	550	407
4100	145	167	163	100	67	332	194	125	86	1015	743	538	398
4000	142	164	160	98	66	326	191	122	84	994	728	527	390
3900	139	161	157	96	64	319	187	120	82	972	712	515	381
3800	137	158	154	94	63	313	183	117	80	950	696	504	372
3700	134	155	151	92	61	306	179	114	78	928	680	492	364
3600	131	152	147	89	60	300	175	112	77	905	664	481	355
3500	129	149	144	87	58	293	171	109	75	883	648	469	346
3400	126	146	141	85	57	287	167	106	73	860	631	457	337
3300	123	142	137	83	55	280	163	104	71	837	615	445	328
3200	120	139	134	81	53	273	159	101	69	814	598	433	319
3100	118	136	130	79	52	266	155	98	67	791	582	421	310
3000	115	132	127	77	51	259	150	95	65	768	565	409	301
2900	112	129	124	74	49	252	146	92	63	745	548	396	292
2800	109	125	1 20	72	48	245	142	89	62	722	530	384	283
2700	106	122	116	70	46	237	137	87	60	698	513	371	274
2600	103	118	113	68	45	230	133	84	58	675	495	359	26 5
2500	100	114	109	65	43	222	129	81	56	652	478	347	256
2400	96	111	105	63	42	214	124	78	5 2	627	460	334	246
2300	93	107	101	61	40	207	119	75	51	602	443	321	236
2200	90	103	97	58	39	199	115	72	49	578	425	308	227
2100	86	99	94	56	37	191	110	69	47	553	408	295	217
2000	83	95	90	54	35	184	106	66	45	528	390	282	208
1900	79	91	86	51	33	175	101	63	43	503	371	268	198
1800	76	87	82	49	31	167	96	60	41	478	353	255	188
1700	72	83	78	46	29	159	91	57	39	453	334	242	178
1600	69	78	73	44	28	150	86	54	37	425	315	229	168
1500	65	74	69	41	27	142	82	51	35	402	296	215	158
1400	61	70	65	39	25	133	76	48	32	377	277	201	148
1300	57	65	61	36	23	124	71	44	30	351	259	187	138
1200	53	61	56	3 4	22	115	66	41	28	324	240	174	128
1100	49	56	52	31	20	107	61	38	25	298	221	160	118
1000	46	52	48	28	18	98	56	35	23	272	202	146	107
900	41	47	43	25	16	88	50	31	21	246	182	131	97
800	37	42	39	22	14	79	45	28	19	218	162	117	87
700	33	37	34	19	13	69	40	24	16	192	143	103	76
600	28	32	29	17	11	60	34	21	14	165	123	89	65
500	24	27	25	14	9	50	29	18	12	138	103	74	55
400	19	22	20	11	7	40	23	14	9	111	83	59	44
300	15	16	15	9	6	30	18	11	7	83	62	45	33
200	10	11	10	6	4	20	12	7	5	56	42	30	22
100	5	5	5	3	2	10	6	4	2	28	21	15	11

(1) Ces nombres, comme tous les suivants, dans les pages 64 à 69, sont à ajouter aux intensités observées g et non aux intensités normales γ_0 .

TABLE DE REDUCTION III (suite).

Influence de la compensation dans l'hypothèse de Airy. Zones N et O. Unité : 0,1 mgal. Altitudes des zones 0 à 5.000 m. Valeurs positives.

н		N	Ţ			()	
m.	$\begin{array}{c} \mathbf{T} = \\ 40 \text{ km.} \end{array}$	$\begin{array}{c}\mathbf{T}=\\60\text{ km.}\end{array}$	T = 80 km.	$\begin{array}{c} \mathbf{T} =\\ 100 \ \mathbf{km}. \end{array}$	T = 40 km.	T = 60 km.	T == 80 km.	$\begin{array}{c} \mathbf{T} =\\ 100 \text{ km.} \end{array}$
5000	1093	1044	912	769	919	1063	1102	1073
4900	1071	1024	895	755	899	1041	1080	1052
4800	1049	1005	878	741	879	1019	1058	1031
4700	1027	985	861	727	859	997	1036	1010
4600	1005	965	844	713	838	975	1014	989
4500	983	946	827	699	818	953	993	968
4400	961	926	810	684	798	931	971	947
4300	939	906	793	670	778	909	949	926
4200	917	886	776	656	758	888	927	905
4100	895	866	759	641	738	866	905	884
4000	873	846	742	627	718	844	883	863
3900	851	825	724	612	699	822	861	842
3800	829	805	707	598	679	800	839	821
3700	807	785	689	583	659	779	817	799
3600	785	764	672	569	640	757	795	778
3500	763	744	654	554	621	735	773	757
3400	741	723	627	539	601	713	750	736
3300	719	703	609	514	582	692	728	715
3200	697	682	601	499	563	670	706	693
3100	675	662	584	484	544	649	684	672
3000	653	641	566	480	$525 \\ 506 \\ 487 \\ 468 \\ 450$	627	662	651
2900	631	620	548	464		606	640	630
2800	609	599	530	449		584	617	608
2700	586	579	512	434		563	595	587
2600	564	558	494	419		541	573	565
2500	542	537	476	404	431	520	551	544
2400	520	516	458	388	413	499	529	522
2300	498	495	439	373	394	477	507	501
2200	476	474	421	357	376	456	485	479
2100	454	453	403	342	358	435	462	457
2000	432	432	384	326	340	414	440	436
1900	410	410	365	310	322	393	418	415
1800	388	389	347	295	304	372	396	393
1700	366	368	328	289	287	351	374	372
1600	344	346	310	263	269	330	352	350
1500	322	325	291	247	251	309	330	328
1400	300	304	272	231	234	288	308	306
1300	278	282	253	215	217	267	286	284
1200	257	261	234	199	199	246	264	263
1100	235	239	215	183	182	225	242	241
1000	214	218	196	167	164	205	220	219
900	192	196	177	150	147	184	198	197
800	171	175	157	133	130	163	176	175
700	150	153	138	117	113	142	154	153
600	128	132	118	101	97	122	132	131
500	106	110	99	84	81	101	110	109
400	85	88	79	67	74	81	88	88
300	64	66	60	51	48	60	66	66
200	43	44	40	34	32	40	44	44
100	21	22	20	17	16	20	22	22

5

TABLE DE REDUCTION III (suite).

Influence de la compensation dans l'hypothèse de Airy. Zones A à J, K, A à K, L et M. Unité : 0,1 mgal. Profondeurs des zones 0 à 4.000 m. Valeurs négatives.

Н	Á à J	K		AàK			I	· · · · · · · · · · · · · · · · · · ·			1	M	
m.	$\begin{array}{c} \mathbf{T} = \\ 40 \text{ km}. \end{array}$	T = 40 km.	T = 60 km.	$\begin{array}{c} \mathbf{T} = \\ 80 \ \mathbf{km}. \end{array}$	T = 100 km.	Τ= 40 km.	$\begin{array}{c} T = \\ 60 \text{ km.} \end{array}$	T = 80 km.	T = 100 km.	T= 40 km.	T = 60 km.	T = 80 km.	$\begin{array}{c} T = \\ 100 \text{ km} \end{array}$
100	3	$3 \\ 7 \\ 10 \\ 14 \\ 18$	3	2	1	7	4	2	2	17	13	9	7
200	6		6	4	2	13	7	4	3	34	26	18	14
300	9		9	6	4	20	11	6	4	52	39	28	21
400	13		13	7	5	26	15	9	6	69	43	37	28
500	16		16	9	6	33	18	11	8	86	66	47	34
600	19	21	19	11	8	40	22	14	9	103	79	56	41
700	23	25	23	13	9	46	26	16	10	121	92	66	48
800	26	28	26	15	10	54	29	18	12	138	106	75	55
900	29	32	29	17	11	61	33	21	14	152	119	85	62
1000	33	36	33	19	12	67	38	23	16	174	132	95	69
1100	37	40	37	21	13	74	41	25	17	191	146	105	76
1200	40	44	40	23	15	81	45	28	19	209	159	114	84
1300	44	48	44	25	16	88	49	30	20	226	172	124	91
1400	48	52	47	27	17	95	53	33	22	244	186	134	98
1500	51	56	50	29	19	103	57	35	24	262	199	144	105
1600	55	60	54	31	20	110	61	38	26	280	213	154	112
1700	59	65	58	33	21	117	65	40	27	288	227	164	120
1800	63	69	62	35	22	125	70	43	28	316	241	174	127
1900	67	73	65	37	24	132	74	45	30	334	255	184	134
2000	71	77	69	39	25	140	78	48	32	351	269	194	141
2100	75	82	73	41	26	148	82	50	34	369	284	204	149
2200	79	86	76	43	27	155	87	53	35	387	298	215	156
2300	83	91	80	46	28	163	91	55	37	405	312	225	164
2400	88	95	84	48	30	171	95	58	39	424	326	235	171
2500	92	100	88	50	32	179	99	61	40	442	340	246	179
2600	96	104	92	52	33	187	104	63	42	460	355	256	186
2700	101	109	96	54	34	195	108	66	44	478	369	266	194
2800	105	113	100	56	36	203	113	68	45	496	384	277	201
2900	110	118	104	58	37	211	117	71	47	514	398	287	209
3000	114	123	108	61	39	219	122	74	49	532	412	298	217
3100	119	128	112	63	40	227	126	77	51	551	427	309	225
3200	124	133	116	65	41	236	130	79	53	569	442	320	232
3300	129	138	121	68	43	244	135	82	54	587	456	330	240
3400	134	143	125	70	44	252	140	85	56	605	471	341	248
3500	139	148	129	72	46	261	145	88	58	624	486	352	256
3600	144	154	134	75	47	270	150	90	$ \begin{array}{r} 60 \\ 61 \\ 63 \\ 65 \\ 67 \end{array} $	643	501	363	264
3700	149	159	138	77	48	278	154	93		661	516	374	272
3800	155	165	142	79	49	287	159	96		679	531	385	280
3900	160	170	147	82	51	296	164	99		698	546	396	288
4000	165	175	151	84	53	304	169	102		716	562	407	296

DE LA PESANTEUR EN AFRIQUE ORIENTALE

TABLE DE REDUCTION III (suite).

Influence de la compensation dans l'hypothèse de Airy. Zones A à J, K, A à K, L et M. Unité : 0,1 mgal. Profondeurs des zones 4.000 à 8.000 m. Valeurs négatives.

Н	A à J	К 		A à K]	L.		M				
М	T = 40 km.	Т — 40 km.	T = 60 km.	$\begin{array}{c} T = \\ 80 \text{ km}. \end{array}$	T = 100 km.	T = 40 km.	$\begin{array}{c} T = \\ 60 \text{ km.} \end{array}$	$\begin{bmatrix} T = \\ 80 \text{ km.} \end{bmatrix}$	T = 100 km.	Τ= 40 km.	T = 60 km,	T = 80 km.	T = 100 km	
-4000	165	175	151	84	53	304	169	102	67	716	562	407	296	
4100	171	181	156	86	54	313	174	$105 \\ 108 \\ 111 \\ 114 \\ 116$	69	735	577	418	304	
4200	177	186	161	88	56	322	179		71	753	592	429	312	
4300	182	192	165	91	57	331	184		73	771	608	440	320	
4400	188	198	170	93	59.	340	189		74	790	623	452	328	
4500	194	204	175	96	60	350	194		76	808	638	463	336	
	200	210	180	99	62	359	199	119	78	826	654	474	345	
	207	216	185	101	64	369	205	122	80	844	670	486	353	
	213	222	190	104	65	378	210	125	82	863	655	497	361	
	219	228	195	106	67	387	215	128	84	881	701	509	370	
	226	234	200	109	68	396	220	131	86	900	717	520	378	
5100	232	240	205	112	70	$\begin{array}{r} 406 \\ 415 \\ 425 \\ 435 \\ 445 \end{array}$	226	135	88	918	733	532	386	
5200	239	247	210	114	71		231	138	90	936	749	543	395	
5300	246	253	215	117	73		236	141	92	954	765	555	403	
5400	253	260	220	119	75		242	144	94	972	781	567	412	
5500	260	266	225	122	76		247	147	96	991	797	579	420	
5600	267	273	231	125	78	455	253	150	98	1009	813	591	429	
5700	275	280	236	128	80	465	258	153	100	1027	829	603	438	
5800	282	286	242	130	81	475	264	157	102	1045	846	615	446	
5900	290	293	248	133	83	485	270	160	104	1063	862	627	455	
6000	297	300	253	136	84	495	275	163	106	1081	878	639	464	
6100	306	308	258	139	86	$505 \\ 516 \\ 526 \\ 536 \\ 547 $	281	167	108	1099	895	651	472	
6200	314	317	264	142	88		287	170	110	1117	912	663	481	
6300	322	322	270	145	89		293	174	112	1134	928	676	490	
6400	330	330	276	148	91		299	177	114	1152	945	688	499	
6500	339	337	282	151	93		305	180	117	1170	961	700	508	
6600	$348 \\ 357 \\ 366 \\ 375 \\ 384$	345	288	154	95	557	311	184	119	1188	978	713	517	
6700		352	294	157	96	568	317	187	121	1205	995	725	526	
6800		360	300	160	98	578	323	191	123	1223	1011	738	535	
6900		368	306	163	100	589	329	194	125	1243	1028	750	544	
7000		376	312	166	102	600	335	198	127	1258	1045	763	553	
7100	394	384	319	169	104	611	342	201	129	1275	1062	776	562	
7200	404	392	325	172	106	622	348	205	132	1292	1079	789	571	
7300	415	400	332	175	107	633	355	209	134	1309	1096	801	581	
7400	425	408	338	178	109	644	361	212	136	1326	1113	814	590	
7500	435	417	344	181	111	655	368	216	138	1343	1130	827	599	
7600	446	426	351	184	113	666	375	220	141	1360	1148	840	610	
7700	457	435	358	188	115	677	381	223	143	1376	1165	853	619	
7800	469	443	365	191	116	688	388	227	145	1393	1182	866	628	
7900	480	452	372	194	118	699	395	231	147	1410	1200	879	637	
8000	492	461	379	197	120	710	402	234	150	1426	1217	893	647	
TABLE DE REDUCTION III (suite).Influence de la compensation dans l'hypothèse de Airy.Zones N et O. Unité : 0,1 mgal.Profondeurs des zones 0 à 4.000 m. Valeurs négatives.

II	<u></u>	 1	N.			()	
m.	T = 40 km.	$\mathbf{r} = \mathbf{60 \ km}.$	T = 80 km.	T = 100 km.	T = 40 km.	T = 60 km.	$\begin{array}{c} T = \\ 80 \text{ km.} \end{array}$	$\begin{array}{c} T = \\ 100 \text{ km.} \end{array}$
100	13	13	12	10	10	12	13	13
200	26	27	24	20	19	24	27	27
300	39	40	36	31	29	36	40	40
400	42	44	49	41	38	49	54	53
500	65	67	61	52	48	61	68	67
600	78	81	73	63	58	73	81	80
700	90	94	86	73	67	85	94	94
800	103	108	98	84	76	98	108	108
900	115	122	111	95	85	140	121	121
1000	128	135	123	105	95	122	135	135
	130	149	136	116	104	134	148	149
	143	162	148	127	113	146	161	162
	155	176	161	137	122	158	174	176
	168	189	173	148	131	170	188	190
	190	202	186	159	140	182	201	203
	202	216	198	170	149	194	214	216
	215	230	211	181	158	206	228	230
	227	243	223	191	167	218	241	244
	239	257	236	202	176	230	255	258
	252	271	248	213	184	242	268	271
2100	264	284	261	224	193	253	284	284
2200	276	298	273	235	202	265	294	297
2300	288	311	286	246	210	277	308	311
2400	300	325	299	257	219	289	321	325
2500	312	339	311	268	227	300	334	339
2600	324	352	324	279	236	312	347	352
2700	335	366	337	290	244	323	360	365
2800	347	379	350	301	252	335	374	379
2900	359	393	363	312	260	346	387	393
3000	371	406	375	323	269	358	409	406
3100	382	420	388	334	277	369	413	420
3200	393	434	401	345	285	381	426	433
3300	405	447	414	357	293	392	439	446
3400	417	461	427	368	301	403	452	460
3500	429	474	440	379	309	415	465	474
	440	488	453	391	316	426	478	488
	451	502	466	402	324	437	491	501
	462	515	479	413	332	448	504	515
	473	529	492	425	340	459	517	528
	485	542	505	436	347	470	531	542

TABLE DE REDUCTION III (suite).Influence de la compensation dans l'hypothèse de Airy.

Zones N et O. Unité : 0,1 mgal.

Profondeurs des zones 4.000 à 8.000 m. Valeurs négatives.

Н			N		· · · · · ·		0	
m.	$\begin{array}{c} \mathbf{T} = \\ 40 \ \mathrm{km} \end{array}$	T = 60 km.	Т == 80 km.	$\begin{array}{c} \mathbf{T} =\\ 100 \text{ km.} \end{array}$	T = 40 km.	T = 60 km.	$\begin{array}{c} T = \\ 80 \text{ km.} \end{array}$	$\begin{array}{c} \mathbf{T} = \\ 100 \text{ km.} \end{array}$
-4000	485	542	505	436	347	470	531	542
4100	495	556	518	448	354	481	544	556
4200	506	569	531	459	362	492	557	569
4300	517	583	544	470	369	503	570	583
4400	528	596	557	482	377	514	583	596
4500	539	610	570	493	384	525	596	610
4600	550	623	583	505	391	536	608	624
4700	560	637	596	517	398	547	621	637
4800	571	650	609	528	405	558	634	651
4900	- 581	663	622	540	412	569	647	664
5000	592	677	636	551	420	580	660	678
5100	602	690	649	563	426	591	673	691
5200	612	703	662	575	433	602	686	705
5300	623	717	675	587	440	612	698	718
5400	633	730	698	598	447	622	711	732
5500	643	744	702	610	454	633	724	746
5600 5700 5800 5900 6000	653 663 673 683 693	757 770 784 797 810	715 728 742 755 768	622 634 645 657 669	$\begin{array}{r} 460 \\ 466 \\ 473 \\ 479 \\ 486 \end{array}$	$\begin{array}{c} 643 \\ 654 \\ 664 \\ 675 \\ 685 \end{array}$	737 750 762 775 788	759 772 786 800 813
6100	702	823	781	681	492	695	200	827
6200	712	836	795	693	498	706	813	841
6300	721	849	808	705	504	716	825	854
6400	731	862	821	715	510	726	838	867
6500	741	876	835	728	516	737	851	881
6600	750	889	848	740	522	747	863	894
6700	759	902	861	752	528	757	876	908
6800	768	913	875	764	533	767	888	921
6900	777	928	888	776	539	777	901	935
7000	786	941	902	788	544	787	913	948
7100	795	954	915	800	$550 \\ 555 \\ 561 \\ 566 \\ 571$	796	926	962
7200	804	967	929	813		806	938	975
7300	813	980	942	825		816	951	989
7400	821	993	955	837		825	963	1002
7500	830	1006	969	849		835	975	1016
7600	838	1019	982	861	576	845	988	1029
7700	847	1031	996	873	581	854	1000	1043
7800	855	1044	1009	885	586	864	1012	1056
7900	863	1057	1023	898	591	873	1025	1070
8000	872	1070	1036	910	596	882	1037	1083

TABLE IV.

Influence de la compensation dans l'hypothèse de Hayford (profondeur de la surface de compensation : 113,7 km.). Zones A à K, L, M, N, O. Unité : 0,1 mgal. Valeurs de même signe que H.

Ĥ m.	А-К	L	<u>[</u> M	N	0
5000	845	389	943	858	835
4900	828	381	924	841	818
4800	811	373	905	824	801
4700	794	365	886	807	784
4600	777	357	868	789	768
4500	761	350	849	772	751
4400	744	342	830	755	734
4300	727	334	811	738	718
4200	710	326	792	721	701
4+00	693	319	773	704	684
4000	676	311	754	686	6 68
3900	659	303	736	669	651
3800	642	295	717	652	634
3700	625	288	698	635	648
3600	608	280	679	618	601
3500	592	272	660	604	584
3400	575	264	641	583	567
3300	558	256	622	566	557
3200	541	249	604	549	534
3100	524	241	585	532	517
3000	507	233	566	515	501
2900	490	225	547	498	484
2800	473	218	528	480	467
2700	456	210	509	463	451
2600	439	202	490	446	434
2500	423	194	472	429	417
2400	406	187	453	412	401
2300	389	179	434	395	384
2200	372	171	415	378	367
2100	355	163	396	360	350
2000	338	155	377	343	334
1900	321	148	358	326	317
1800	304	140	339	309	300
1700	287	132	321	292	284
1600	270	124	302	275	267
1500	254	117	283	257	250
1400	237	109	264	240	234
1300	220	101	245	223	217
1200	203	93	226	206	200
1100	186	86	207	189	184
1000	169	78	189	172	167
900	152	70	170	154	150
800	135	62	151	137	134
700	118	54	132	120	117
600	101	47	113	103	100
500	85	39	94	86	83
400	68	34	75	69	67
300	51	23	57	51	50
200	34	16	38	34	33
100	17	8	19	17	17

н	AàJ	К	L			
m.	1000 ^m 2000 ^m 3000 ^m 4000 ^m	1000 ^m 2000 ^m 3000 ^m 4000 ^m	1000 ^m 2000 ^m 3000 ^m 4000 ^m			
	T = 40 km.	T = 40 km.	T == 40 km.			
4000 3000 2000 1000	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $			
1000 2000 5000	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $			
		A àK T = 60 km.	$\begin{array}{c} L \\ T = 60 \text{ km.} \end{array}$			
4000 3000 2000 1000	· · · · · · · · · · ·	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $			
— 1000 — 2000 — 5000	 	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $			
		$\mathbf{T} = 80$ km.	T 🛶 80 km.			
4000 3000 2000 1000		$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $			
1000 2000 5000		$\begin{array}{c c} 0 & +1 & +2 & +2 \\ +1 & +2 & +3 & +4 \\ - & - & - & - \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $			
		T = 100 km.	T == 100 km.			
4000 3000 2000 1000		$\begin{vmatrix} -1 & -2 & -3 & -3 \\ -1 & -2 & -3 & -3 \\ -1 & -1 & -2 & -2 \\ 0 & -1 & -1 & -1 \end{vmatrix}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $			
1000 2000 5000	· · · · · · · · · · ·	$ \begin{array}{c c} 0 \\ 0 \\ - \end{array} + \begin{array}{c} 0 \\ + 1 \\ - \end{array} + \begin{array}{c} 1 \\ + 1 \\ - \end{array} + \begin{array}{c} 1 \\ + 2 \\ - \end{array} $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $			

TABLE DE REDUCTION V (1).Influence de l'altitude de la station, zones A à L, pour des valeurs
de cette altitude 1.000, 2.000, 3.000 et 4.000 m. Unité : 0,1 mgal.

(1) Les nombres de cette table V sont à ajouter aux nombres correspondants de la table III, calculés pour l'altitude de la station nulle.

,

.

Н	М	N	0		
m.	1000 ^m 2000 ^m 3000 ^m 4000 ^a	1000 ^m 2000 ^m 3000 ^m 4000 ^m	1000 ^m 2000 ^m 3000 ^m 4000 ^m		
	T 10 1-m		T — 40 lm		
	$1 \equiv 40$ km.	1 = 40 km.	1 = 40 Km.		
4000 3000 2000 1000	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
1000 2000 5000	$\begin{vmatrix} + 2 \\ + 3 \\ + 3 \\ - \end{vmatrix} + \begin{vmatrix} + 4 \\ + 7 \\ + 10 \\ - \end{vmatrix} + \begin{vmatrix} + 6 \\ + 14 \\ + 14 \\ - \end{vmatrix}$	$\begin{vmatrix} -2 \\ -3 \\ -5 \\ -7 \\ -10 \end{vmatrix} = \begin{vmatrix} -6 \\ -6 \\ -10 $	$\begin{vmatrix} -2 & -3 & -5 & -7 \\ -3 & -7 & -11 & -14 \\ -9 & -19 & -29 & -38 \end{vmatrix}$		
	T = 60 km.	T = 60 km.	T == 60 km.		
4000 3000 2000 1000	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{vmatrix} -4 & -8 & -12 & -17 \\ -3 & -6 & -9 & -12 \\ -2 & -4 & -6 & -7 \\ -1 & -2 & -3 & -4 \end{vmatrix} $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $		
1000 2000 5000	$\begin{vmatrix} + 2 \\ + 4 \\ + 4 \\ + 8 \\ - 11 \\ - 15 \\ - $	$ \begin{vmatrix} 0 \\ 0 \\ -1 \\ -1 \\ -2 \\ -1 \\ -1 \\ -2 \\ -3 \\ -1 \\ -2 \\ -3 \\ -3 \\ -3 \\ -3 \\ -3 \\ -3 \\ -3$	$\begin{array}{c c} 0 & -1 & -2 & -4 \\ -2 & -3 & -4 & -7 \\ -6 & -12 & -17 & -23 \end{array}$		
	T = 80 km.	T = 80 km.	T = 80 km.		
4000 3000 2000 1000	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $		
1000 2000 5000	$\begin{array}{c c} + 1 \\ + 3 \\ + 3 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{vmatrix} 0 & 0 & -1 & -2 \\ -1 & -2 & -3 & -4 \\ -2 & -4 & -6 & -8 \end{vmatrix}$		
	T = 100 km.	T = 100 km.	$\mathbf{T} = 100 \ \mathrm{km}$.		
4000 3000 2000 1000	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{vmatrix} -6 & -11 & -16 & -22 \\ -4 & -8 & -13 & -17 \\ -3 & -6 & -9 & -12 \\ -2 & -3 & -5 & -6 \end{vmatrix} $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		
1000 2000 5000	$\begin{vmatrix} + 1 \\ + 1 \\ + 1 \\ - \end{vmatrix} \begin{vmatrix} + 1 \\ + 3 \\ - \end{vmatrix} \begin{vmatrix} + 2 \\ + 5 \\ + 7 \\ - \end{vmatrix}$	$\begin{vmatrix} +1 \\ +1 \\ +2 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -$	$ \begin{vmatrix} 0 & 0 & +1 & +1 \\ 0 & +1 & +2 & +2 \\ +1 & +1 & +2 & +3 \end{vmatrix} $		

TABLE DE REDUCTION V (suite).

Influence de l'altitude de la station, zones M, N et O, pour des valeurs de cette altitude 1.000, 2.000, 3.000 et 4.000 m. Unité : 0,1 mgal.

TABLE DE REDUCTION VII.

Zones 18 à 16. Influence de la compensation dans l'hypothèse de Airy et influence de la compensation d'après Hayford (profondeur de la surface de compensation : 113,7 km.). Unité : 0,1 mgal. Valeurs de même signe que H.

Н	F 18 à 24		1	18			1	7			1	6		
m.	d'après Hayford.	′f = 40 km.	T = 60 km.	T == 80 km.	$\begin{array}{c} \mathbf{T} \coloneqq \\ 100 \ \mathbf{km}. \end{array}$	T = 40 km.	$\begin{array}{c} \mathbf{T} = \\ 60 \ \mathbf{km} \end{array}$	T = 80 km.	T = 100 km.	T = 40 km.	T = 60 km.	T == 80 km.	T = 100 km	
5000	164	170	213	240	253	166	213	245	265	162	211	248	275	
4800	157	162	204	230	242	158	203	235	254	154	201	238	263	
4600	151	154	195	220	232	150	194	224	243	146	192	228	252	
4400	144	147	186	210	222	143	184	214	232	139	183	217	241	
4200	138	139	177	200	242	135	175	204	221	132	174	207	229	
4000	131	131	168	190	202	129	166	194	210	125	164	196	218	
3800	125	124	159	180	191	122	157	183	199	118	156	186	207	
3600	119	117	150	171	181	114	148	173	188	111	147	176	196	
3400	112	110	141	161	171	107	140	163	178	104	139	166	184	
3200	105	102	132	151	161	100	131	153	167	97	130	155	173	
3000	98	95	123	141	151	93	122	143	157	90	121	145	162	
2800	92	88	114	131	140	86	113	133	146	83	113	135	151	
2600	85	81	106	122	130	79	105	123	135	77	104	125	140	
2400	79	75	97	112	120	72	96	113	125	70	96	115	129	
2200	72	68	89	103	110	66	88	103	114	64	87	105	118	
2000	66	61	80	93	100	59	79	94	104	57	79	95	107	
1800	59	55	72	84	90	53	71	84	93	51	70	85	96	
1600	52	58	64	74	80	47	63	75	83	45	62	75	85	
1400	46	42	55	65	70	41	55	65	72	39	54	66	74	
1200	39	36	47	56	60	34	47	56	62	33	46	56	64	
1000	33	29	39	46	50	28	39	46	51	27	38	47	53	
800	26	23	31	37	40	23	31	37	41	22	31	37	42	
600	20	17	24	27	30	17	23	27	31	16	23	28	31	
400	13	12	16	18	20	11	15	18	20	11	15	18	21	
200	7	6	8	9	10	6	8	9	10	5	8	9	11	
0	0	$\begin{array}{c} 0 \\ 8 \\ 17 \\ 25 \\ 32 \end{array}$	0	0	0	0	0	0	0	0	0	0	0	
500	10		12	14	15	8	12	14	16	8	11	14	16	
1000	20		23	28	30	16	23	28	31	16	22	28	32	
1500	30		34	41	45	24	34	41	46	23	33	41	47	
2000	40		45	55	60	31	45	55	62	30	44	55	63	
2500	50	40	56	68	75	38	55	68	77	37	54	68	79	
3000	61	47	67	82	90	45	66	82	93	44	65	82	94	
3500	71	53	78	95	105	52	76	95	107	50	74	94	110	
4000	81	60	88	108	120	58	86	108	122	56	84	107	125	
4500	91	66	98	121	135	64	96	120	137	62	94	120	140	
5000	101	73	108	134	149	70	105	133	152	67	103	132	155	
5500	111	79	118	146	164	75	114	145	167	72	112	145	170	
6500	121	84	127	159	178	81	124	158	182	77	121	157	185	
6500	131	89	136	171	192	85	133	170	196	82	130	169	199	
7000	141	94	145	183	206	90	141	182	210	87	138	180	213	
—7500	151	99	154	195	220	95	150	193	224	91	146	192	227	
—8000	161	10 3	162	206	234	99	158	204	238	95	154	203	241	

•

TABLE DE REDUCTION VII (suite).

Zones 15 à 13. Influence de la compensation dans l'hypothèse de Airy. Zone 13. Influence de la compensation d'après Hayford (profondeur de la surface de compensation : 113,7 km.). Unité : 0,1 mgal.

н		1	15				14		;	1	3		F 13
m.	T =	T =	T =	T ==	Т —	T ==	T =	T =	T —	Ť =	T =	T ==	d'après
	40 km.	60 km	80 km.	100 km.	40 km.	60 km.	80 km	100 km.	40 km.	60 km.	80 km.	100 km.	Bayford.
5000	159	210	252	285	156	209	255	293	243	333	413	486	263
4800	151	200	242	273	148	200	244	281	232	318	395	466	252
4600	144	191	231	261	141	191	233	269	221	303	377	445	242
4400	136	182	220	249	134	181	222	256	209	283	359	424	231
4200	129	173	209	237	127	172	211	244	198	273	341	403	221
4000	122	164	199	225	119	162	200	232	187	258	323	382	210
3800	115	154	188	214	112	153	189	220	176	244	306	361	200
3600	108	146	177	202	105	144	178	208	165	230	289	341	189
3400	101	137	167	191	99	136	168	196	155	216	272	321	179
3200	95	128	156	179	92	127	158	184	144	202	255	301	168
3000	88	119	146	167	86	119	148	172	134	188	238	281	157
2800	82	111	136	156	79	110	137	160	124	174	221	262	147
2600	75	103	126	144	73	102	127	148	114	160	204	243	136
2400	69	94	116	133	67	93	117	136	105	147	188	223	126
2200	62	86	106	121	61	85	107	124	95	133	171	204	115
2000	56	78	96	110	55	77	96	112	85	121	154	184	105
1800	50	70	86	99	49	69	86	101	76	108	138	165	94
1600	44	62	77	87	43	61	76	90	67	96	122	146	84
1400	38	54	67	76	37	53	67	78	58	83	107	128	73
1200	33	46	57	65	32	45	57	67	50	71	91	109	63
1000	27	38	47	54	26	37	47	56	41	59	76	91	53
800	21	30	37	43	21	30	38	44	32	47	60	72	42
600	16	22	28	33	15	22	28	33	24	35	45	54	32
400	11	15	18	22	10	15	19	22	16	23	30	36	21
200	5	7	9	11	5	7	9	11	8	11	15	18	10
0	0	0	0	0	0	0	0	0	0	0	0	0	0
500	8	11	14	16	7	11	14	17	12	17	23	27	16
1000	15	22	28	33	15	22	28	33	23	34	45	54	32
1500	22	32	41	49	22	32	41	50	34	51	66	81	48
2000	29	43	55	65	28	42	55	66	45	67	88	107	65
2500	36	53	68	81	35	52	69	82	54	83	109	133	71
3000	42	63	81	96	41	62	81	98	64	98	130	159	97
3500	48	73	94	112	47	72	94	114	73	112	150	184	113
4000	54	82	107	127	53	81	107	129	82	127	170	209	129
4500	60	92	119	143	58	90	119	144	90	141	190	234	145
5000	65	101	132	158	63	99	132	160	99	155	210	259	162
5500	70	110	144	173	68	108	144	175	107	168	229	283	178
6500	75	119	156	187	73	116	156	190	114	182	247	306	194
6500	79	127	168	202	78	125	167	204	131	194	266	330	210
7000	84	135	180	217	82	133	179	219	127	206	284	353	226
7500	88	143	191	231	86	140	190	233	133	218	-301	376	242
8000	92	150	202	245	90	148	201	247	139	230	-318	398	258

Н	Hayford		Heisk	anen	1.
m.	0,1 mgal	40 km.	60 km.	80 km.	100 km.
5000	164	149	201	250	295
4800	157	143	192	240	283
4600	151	136	181	230	271
4400	144	128	172	220	260
4200	138	121	164	210	248
4000	131	114	157	195	232
3800	125	109	148	182	220
3600	118	102	137	173	209
3400	112	95	129	163	197
3200	105	88	122	154	186
3000	98	81	114	144	171
2800	92	76	106	132	160
2600	85	70	96	122	148
2400	79	64	89	113	137
2200	72	58	81	103	125
2000	66	52	74	92	112
1800	59	47	67	83	101
1600	52	41	58	74	88
1400	46	35	50	64	77
1200	39	29	43	55	66
1000	33	25	36	46	55
800	26	19	29	37	43
600	20	14	22	28	32
400	13	- 9	14	18	22
200	7	5	7	9	11
0	0	0	0	0	0
500	10	7	11	14	17
1000	20	14	21	27	33
1500	30	20	31	41	50
2000	40	26	41	54	66
2500	51	32	51	68	83
3000	61	38	60	80	96
3500	71	44	69	91	112
4000	81	49	78	104	127
4500	91	55	87	117	144
5000	101	60	95	127	160
5500	111	64	103	138	173
6000	121	68	111	150	186
6500	131	72	119	160	202
7000	141	76	127	171	217
	151	79	134	180	228
	162	82	141	192	240

TABLE VII.Zone 12.

Δ²	-0.114 -0.114 -0.086 -0.070 -0.025 -0.025 -0.025 +0.025 +0.023 +0.033 +0.033 +0.033 +0.033 -0.084 -0.084 -0.639 -0.639 -1.78 -
Δı	 0.609 0.720 0.876 0.876 0.949 0.949 0.942 0.942 0.942 0.952 0.952 0.9551 0.9551 1.186 1.186 1.186 1.186 1.186 1.114
$\frac{df}{d\phi}$ sin ϕ	+ 2.736 + 2.127 2.127 1.407 + 0.601 - 0.275 - 1.199 - 2.148 - 2.148 - 2.148 - 2.148 - 4.957 - 4.957 - 4.957 - 4.957 - 4.957 - 4.957 - 4.957 - 2.138 - 4.957 - 2.705 -
<u>م</u> ر ۲	 +0 062 0 074 0 085 0 092 0 094 0 094 0 0986 0 0986 0 019 0 045 0 045 0 045 0 045 0 045 0 031 0 045 0 0986 0 0 0 0986 0 0 0 0 0986 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Δ,	-0.205 -0.131 -0.046 0.140 0.319 0.319 0.319 0.319 0.319 0.319 0.319 0.319 0.319 0.319 0.319 0.346 0.346 0.529 0.437 0.342 0.342 0.342
/ sin ψ	-1.828 -2.033 -2.164 -2.210 -2.210 -2.210 -1.791 -1.792 -1
÷	90 85 85 85 85 85 85 85 85 85 85 85 85 85
Δ_2	+0.096 +0.088 0.079 0.079 0.076 0.076 0.079 0.076 0.079 0.079 0.079 0.079 0.076 0.025 -0.03 0.035 0.103 0.103 0.115 0.127 -0.127
Δ,	 +0.049 +0.145 +0.312 +0.374 +0.374 0.425 0.448 0.448 0.448 0.448 0.448 0.448 0.425 0.236 0.236 0.330 106 0.236 0.330 0.330 0.495 -0.495
$df/d\psi \sin \psi$	 +0.000 0.194 0.194 0.194 0.739 0.739 1.113 1.978 1.978 1.978 2.851 3.536 3.556 3.943 3.933 3.231
Δ_2	-0.014 -0.030 -0.054 -0.056 -0.066 -0.068 -0.068 -0.068 -0.069 -0.056 -0.046 -0.019 -0.019 +0.014 +0.031 +0.031
۵ı	+0.266 0.222 0.222 0.128 0.128 0.128 0.128 0.128 0.128 0.128 0.128 0.128 0.128 0.128 0.128 0.128 0.128 0.128 0.128 0.128 0.128 0.128 -0.233 -0.333 -0.333 -0.333 -0.333 -0.346 -0.346 -0.346 -0.346 -0.346
f sin ¢	+0.000 0.518 0.518 0.740 0.922 1.050 1.118 1.119 1.119 1.119 1.119 1.118 1.118 1.118 1.118 1.118 1.118 1.118 1.118 1.118 1.118 1.118 1.118 1.118 1.118 1.118 1.118 1.119 1.118
	95 95 95

TABLE A.

.

76 M. DEHALU. – LA GRAVIMÉTRIE ET LES ANOMALIES

Ψo	f sin ψ	Δ,	Δ2	$df/d\psi\sin\psi$	Δ_1	Δ_2
15°	2 224	0.054		- 11:53	0.51	
14	2 278	+0.024	-0.002	- 12.04	- 0.01	- 0.08
13	2 · 325	+0.042	-0.002	- 12.63	- 0.59	- 0.11
12	2 367	+0.045	-0.007	- 13 33	- 0.70	- 0.12
11	2 402	+0.032	-0.008	- 14 15	- 0.82	0.17
10	2 . 429	+0.027	-0.002	- 15.14	- 0.99	0.51
9	2 · 449	+0.050	-0.009	- 16.34	- 1.50	0.35
8	2.460	+0.011	-0.008	- 17.86	- 1.52	- 0.49
7	2.463	+0:003	-0.015	- 19.87	- 2 01	- 0.66
6	2.454	-0.009	-0.015	- 22 54	- 2.67	- 1.07
5	2 · 433	-0.021	-0.012	- 26.28	- 3.74	- 1.82
4	2 · 395	-0.038	-0.018	- 31 94	- 5 66	- 3.83
3	2.339	-0.026	-0.016	- 41.43	- 9.49	- 9.54
2	2.267	-0.072	0:018	- 60.46	-19.03	-36.5
1	2 · 177	-0.090	-0+087	-117.7	-29.5	
0	2.000	-0; 177		- 30	- 00	

TABLE B.

BIBLIOGRAPHIE

- [1] Congrès International des Éphémérides astronomiques, tenu à l'Observatoire de Paris du 23 au 26 octobre 1911, publié par le Bureau des longitudes, 1911, pp. 36-42.
- [2] Bulletin géodésique, n° 32, 1931.
- [3] N. F. ZHURAVLEW, Publ. of the Sternberg state astr. Inst., Moscou, 1940, t. XIV, part. 2.
- [4] Investigations of the gravity formula (Ann. Ac. Sc. Fen., série A, t. LI, 1939).
- [5] The effect of topography and isostatic compensation upon the intensity of gravity by J. F. HAYFORD and W. BOWIE, *Coast and Geodetic Survey*, Special publication n° 10, Washington, Gt. Printing Office, 1912.
- [6] Les travaux de l'Institut isostatique de l'Association int. géod. dirigé par M. Heiskanen, sont publiés dans les Annales Academiae Scientiarum Fennicae.
- [7] F. A. VENING MEINESZ, Gravity Expeditions at Sea 1923-1932, vol. II, Delft, 1934.

F. A. VENING MEINESZ, Tables for regional and local isostatic reduction (Airy system), etc., Waltman, Delft, 1941.

- [8] E. C. BULLARD, Gravity measurements in East Africa (Phil. Trans. of the R. S. of London, série A, n° 757, vol. 235, Aug. 1936).
- [9] W. HEISKANEN, Tables isostatiques pour la réduction dans l'hypothèse d'Airy, des intensités de la pesanteur observées (Bull. géod., n° 30, 1931).
- [10] W. HORSFIELD and E. C. BULLARD, Gravity measurements in Tanganyika Territory (Monthly Notices of the Royal Astronomical Society, Geophysical Supplement, vol. 4, n° 1, 1937, January).
- [11] ED. SUESS, La Face de la Terre, traduction E. DE MARGERIE, Paris, A. Colin, 1902.
- [12] D. F. MUNSEY and E. C. BULLARD, Gravity measurements in the Anglo-Egyptian Sudan (Monthly Notices of the Royal Astron-mical Society, Geophysical Supplement, vol. 4, nº 1, 1937, January).
- [13] M. DEHALU, La figure de la Terre et la théorie de l'isostasie d'après les mesures de l'intensité de la pesanteur (Bull. de l'Acad. roy. de Belgique, n° 12, décembre 1941).

- [14] G. G. STOKES, On the variation of gravity at the surface of the earth (Trans. Camb. Phil. Soc., vol. 8, pp. 672-695, an. 1849).
- [15] J. DE GRAAFF HUNTER, The Figure of the Earth from gravity observations and the precision obtainable (*Phil. Trans. of the R. S. of London*, série A, n° 731, vol. 234, nov. 1934).
- [16] B. L. GULATEE, Research and technical notes Survey of India-Geodetic Report, 1934, pp. 141-142.
- [17] Carte magnétique du Congo Belge, par L. HERMANS (Mém. Inst. R. Colonial Belge, coll. in-4°, t. III, fasc. 4, pp. 39-41).

80 M. DEHALU. - LA GRAVIMÉTRIE ET LES ANOMALIES, ETC.

TABLE DES MATIÈRES

												Pages.
AVANT-PROPOS .			•.	•	•	•	•	•		•	٠	3
A. — La gra	avimétrie		•			•:		•		•	•*	5
1. — La	formule d	le Clair	aut e	et les	form	nules	rela	atives	à la	grav	ité	
1	normale		•	•	:•.	•,					.••	5
2. — Réc	iuction au	géoïde	des	vale	urs d	le g	mesu	rées		÷		10
3. – Les	hypothès	ses isos	tatiq	ues	•	-	•					13
4. — Zor	nes et com	partim	ents	terre	stres		•	•	-	· .		19
5. — Cal	cul des af	traction	ns				•	•>	•			22
6. — Cal	cul des a	nomalie	s de	grav	ité		•		•			24
7. — Cal	cul de l'a	ttractio	n du	relie	f tope	ograp	hiqu	e et d	le l'in	nfluer	nce	
5	u delà de	la zon	еO	•	•		•	•			••	25
8. — Cal	lcul des a	nomalie	s.	•	•	•	-	•			•	31
B. — Les ar	nomalies d	de la g	ravit	é du	ns l'I	Afriq	que (Irien	tale	•	•	32
$C La \ gree$	avimétrie	et les	trian	gula	tions	géod	désiq	ues	·		•	42
1. — Th	éorème de	e Stokes	5.	•			•	•			. . •	42
2. — Ar	rangement	des fo	rm <mark>ul</mark>	es po	our le	e cal	cul		ţ			55
3. — Ap	plication a	au calci	ul de	s dé	viatio	ns d	e la	verti	cale	dàns	la	
1	région du	lac All	bert	•	•	÷			•	•	•	58
4. — Im	portance o	lu théo	rème	de S	Stoke	s au	poin	t de v	ue de	es tri	an-	
1	gulations	géodési	ques	•		÷		•	•		•	60
BIBLIOGRAPHIE .				•	·	÷	·	•		2ª		78
TABLE DES MATIÈ	RES .			•	·	•	×	.•	ч. Э		÷	80

Tome IX.

1. VAN WING, le R. P. J., Études Bakongo H. Religion et Magie (301 pages, fr.	60	»
 Ingures, Fourche, S. Binnones, 1989, H., Les communications des indigènes TIARKO FOURCHE, J. A. et Mortlouem, H., Les communications des indigènes du Kusai avec les àmes des morts (78 pages, 1939). 	12	*
3. LOTAR, le R. P. L., La grande Chronique du Boniu (163 pages, 3 cartes, 1990).	33	"
1941)	16	3)
Тоте Х.		
 VANHOVE, J., Essai de droit contumier du Ruanda (Mémoire couronné au Con- cours annuel de 1940) (125 pages, 1 carte, 13 planches, 1941)	33	9
2. OLBRECHTS, F. M., Bijdrage tot de kennis van de Chronologie der Afrikaansene	15	Ŋ
plastiek (38 blz., A pl., 1941) 2 pr Bratcours le R P R Les Basongo de la Luniungu et de la Gobari (Mémoire		
conronné au Concours annuel de 1940) (172 pages, 15 planches, 1 carte, 1941).	50	33

Controlling au concours animer de labo (no pages, pages,

Tome XI.

1.	MERTENS, le R. P. J., Les chefs couronnés chez les Ba Kongo orientaux. Etude de régime successoral (Mémoire couronné au Concours annuel de 1938)		
	(555 pages, 8 planches, 1942)	125	n
2.	GEDERS, V., Le clan dans la Societé indigene. Etitté de portugue sociale, ocure et computée (72 pages, 1943)	15	<u>)</u> ?

SECTION DES SCIENCES NATURELLES ET MEDICALES

	Tome I.		
1.	ROBYNS, W., La colonisation végétale des laves récentes du volcan Rumoka (laves de Kateruzi) (33 pages, 10 planches, 1 carte, 1932).	15	H
2.	DUBOIS, le Dr A., La lèpre dans la région de Wamba-Pawa (Uele-Nepoko)	13	α
3.	LEPLAE, E., La crise agricole coloniale et les phases du développement de l'agri- culture dans le Congo central (31 pages, 1932)	5	ม
4.	DE WILLEMAN, E., Le port sulfrutescent de certains végétaux tropicaux dépend de facteurs de l'ambiance ! (51 pages, 2 planches, 1933)	10	B
5 .	ADRIAENS, L., CASTAGNE, E. et VLASSOV, S., Contribution a Lettude histotogique et chimique du Sterculia Bequaerti De Wild. (112 pages, 2 planches, 28 fig., 1933).	24	r
6.	VAN NINSEN, le Dr R., L'hygiène des travailleurs noirs dans les camps industriets du Haut-Kalanga (248 pages, 4 planches, corte et diagrammes, 1933).	45	ĸ
7.	STEVAERT, R. et VRYDAGH, J., Etude sur une maladie grave du cotonnier provo- quée par les piqures d'Helopeltis (55 pages, 32 figures, 1933)	20	"
S .	DELEVOY, G., Contribution à l'étude de la végétation forestière de la vallee de la Lukuga (Kalanga septentrional) (124 pages, 5 planches, 2 diagr., 1 carte, 1933).	40	»
	Tome II.		
1.	HAUMAN, L., Les Lobelia géants des montagnes du Congo belge (52 pages, 6 figu- res, 7 planches, 1934)	15	э
2.	DE WILDEMAN, E., Remarques à propos de la forêt équatoriale congolaise (120 p., 3 cartes hors texte, 1934)	2 6	ų
3	. HENRY, J., Etude géologique et recherches minières dans la contrée située entre Ponthierville et le lac Kivu (51 pages, 6 figures, 3 planches, 1934).	16	N
4.	DE WILDEMAN, E., Documents pour l'élude de l'aumentation végétale de l'haugene du Congo belge (264 pages, 1934)	35	»
5	POLINARD, E., Constitution géologique de l'Entre-Lulua-Bushimaie, du 7 ^e au 8 ^e parallèle (74 pages, 6 planches, 2 cartes, 1934).	22	ນ
	Tome III.		
1	. LEBRUN, J., Les espèces congolaises du genre Ficus L. (79 pages, 4 figures, 1934).	12	l Ir
2	forêt et dans la savane du Congo oriental (45 pages, 1 carte, 1934).	8	5 N
3	E. DE WILDEMAN, E., TROLLI, GRÉGOIRE et OROLOVITCH, A propos de medicaments inqu- adores congolais (197 pages, 1935)	17	_ p
4	DELEVOY, G et ROBERT, M., Le milieu physique du Centre africain méridional et		

4. DELEVIT, G. et HOBERT, N., Le minical physique au out out out international of la phylogéographie (104 pages, 2 cartes, 1935).
5. LEPLAE, E., Les plantations de café au Congo belge. — Leur histoire (1881-1935). — Leur importance actuelle (248 pages, 12 planches, 1936).
40 m

Tome IV.

5 n

6 9 3. VLASSOV, S., Espèces alimentaires du genre Artocarpus. - 1. L'Artocarpus integrifolia L. ou le Jacquier (80 pages, 10 planches, 1936) 18 n

- DE WILDEMAN, E., Remarques à propos de formes du genre Uragoga L. (Rubia-cées). Afrique occidentale et centrale (188 pages, 1936)
- 27 1 5. DE WILDEMAN, E., Contributions à l'étude des espèces du genre Uapaga BAILL. (Euphorbiacées) (192 pages, 43 figures, 5 planches, 1936). 35 »

Tome V.

ł.	DE WILDEMAN, E., Sur la distribution des saponines dans le règne végétal		
	(94 pages, 1930)	16	ม
2.	ZAHLBRUCKNER, A. et HAUMAN, L., Les lichens des hautes altitudes au Ruwenzori		
	(Si pages, 5 planches, 1936).	10	ж
3.	DE WILDEMAN, E., A propos de plantes contre la lèpre (Crinum sp. Amaryllidacées)		
	(38 pages, 1937)	10	н
4.	HISSETTE, le Dr J., Onchocercose oculaire (120 pages, 5 planches, 1937)	25	n
5.	DUREN, le Dr A., Un essai d'étude d'ensemble du paludisme au Congo belge		
	(so pages, 4 lightes, 2 plancnes, 1937)	16))
6.	STANER, P. et BOUTIQUE, R. Matériaux pour les plantes médicinales indigènes du		

Congo belge (228 pages, 17 figures, 1937) 40 n

Toma VI.

1.	BURGEON, L., Liste des Coléoptères récoltés au cours de la mission belge au		
	Ruwenzori (140 pages, 1937)	25	Ð
2.	LEPERSONNE, J., Les terrasses du fleuve Congo au Stanley-Pool et leurs relations		
	avec celles d'autres régions de la cuvelte congolaise (68 pages, 6 figures, 1937).	12	ю
3.	CASTAGNE, E., Contribution à l'étude chimique des légumineuses insecticides du		
	Congo helge (Mémoire couronné au Concours annuel de 1937) (102 pages,		
	2 figures, 9 planches, 1938)	45	13

4. DE WILDEMAN, E., Sur des plantes médicinales ou utiles du Mayumbe (Congo belge), d'après des notes du R. P. WELLENS + (1891-1924) (97 pages, 1938) 17 »

ADRIAENS, L., Le Ricin au Congo belge. — Étude chimique des graïnes, des huiles et des sous-produits (206 pages. 11 diagrammes. 12 planches, 1 carte. 1938).

60 w

Tome VII.

1. SCHWETZ, le Dr J., Recherches sur le paludisme endémique du Bas-Congo et du Kwango (164 pages, 1 croquis, 1938), fr.	28	»
2. DE WILDEMAN, E., Dioscorea alimentaires et toxiques (morphologie et biologie) (262 pages, 1938).	45	»
3. LEPLAE, E., Le palmier à huile en Afrique, son exploitation au Congo belge et en Extrême-Orient (108 pages, 11 planches, 1939).	30	n

Tome VIII.

raphique et géologique du Ruwenzori septentrional	 Міснот, Р., Étud
18 planches, 2 cartes, 1938)	(271 pages, 17)
et JADIN, J., Contribution à l'étude du mélabolisme du	2. BOUCKAERT, J., CAS
pre chez les indigènes de l'Afrique centrale (Mémoire	calcium et du
annuel de 1938) (25 pages, 1938).	couronné au C
chistosomes et les schistosomoses au Congo belge et	3. VAN DEN BERGHE.
u Ruanda-Urundi (Mémoire couronné au Concours	dans les terri
ges, 14 figures, 27 planches, 1939)	annuel de 1939
à l'étude chimique de quelques gommes du Congo	4. Adriaens, L., Con
ires, 1939)	belge (100 page

.

Tome IX.		
 POLINARD, E., La bordure nord du socle granitique dans la région de la Lubi et de la Bushimai (56 pages, 2 figures, 4 planches, 1939). fr. VAN RIEL, le Dr J., Le Service médical de la Compagnie Minière des Grands Lacs 	16	'n
 Africants et la situation santiaire de la matina datere (36 pages, 5 planence, 1 carte, 1939). 3. DE WILDEMAN, E., Drs TROLLI, DRICOT, TESSITORE et M. MORTIAUX, Notes sur des 	13	»
plantes médicinales et alimentaires du Congo belge (Missions du « Poreami ») (v1-356 pages, 1939)	60	Ŋ
4. POLINARD, E., Les roches alcalines de Chianga (Angola) et les tuis associes (32 pages 2 figures, 3 planches, 1939)	12	n
 ROBERT, M., Contribution à la morphologie du Katanga; les cycles géographiques et les pénéplaines (59 pages, 1939) 	10	»
Tome X.		
 DE WILDEMAN, E., De l'origine de certains éléments de la flore du Congo belge et des transformations de cette flore sous l'action de facteurs physiques et bio- logiques (365 pages, 1940). DUBOIS, le Dr A., La lèpre au Congo belge en 1938 (60 pages, 1 carte, 1940) 	60 12	» »
3. JADIN, le Dr J., Les groupes sanguins des Pygmoïdes et des negres de la province équatoriale (Congo belge) (42 pages, 1 diagramme, 3 cartes, 2 planches, 1940).	10	n
4. POLINARD, E., Het ableriet van den samentoop samentar (12 pages, 3 figures, 1 carte, 5 planches, 1941).	17	Ŋ
5. BURGEON, L., Les Colasposoma et les Euryope un Congo beige (45 pages, 7 rigures, 1941)	10	»
6. PASSAU, G., Découverte d'un Cephalopode et d'autres traces fossiles dans les terrains anciens de la Province orientale (14 pages, 2 planches, 1941).	8	Ħ
Tome XI.		
 VAN NITSEN, le Dr R., Contribution à l'étude de l'enfance noire au Congo belge (82 pages, 2 diagrammes, 1941). SCHWETZ, le Dr J., Recherches sur le Paludisme dans les villages et les camps de la division de Monghenelu des Mings d'or de Kilo (Congo helge) (75 pages 	16	*
1 croquis, 1941).	16	Ŋ
 LEBRUN, J., Recherches morphologiques et systematiques sur les curetters du Construction (Mémoire couronné au Concours annuel de 1937) (184 pages, 19 planches, 1941). BORHAIN Je Dr L. Étude d'unc souche de Trypanosoma Cazaboui (Vivax) (38 pages, 	80	ø
	11	n
5. VAN DEN ABEELE, M., L'Erosion. Problème africain (30 pages, 2 planches, 1941). 6. STANER, P., Les Maladies de l'Hevea au Congo belge (42 pages, 4 planches, 1941).	10) »
7. RESSELER, R., Recherches sur la calcémie chez les indigènes de l'Afrique centrale (54 pages, 1941)	15	រ៍ ឆ
8. VAN DEN BRANDEN, le Dr JF., Le contrôle biologique des Néoarsphénamines (Néo- salvarsan et produits similaires) (71 pages, 5 planches, 1942).	26	0 »
9. VAN DEN BRANDEN, le Dr JF., Le contrôle biologique des Glyphénarsines (Try- parsamide, Tryponarsyl, Novatoxyl, Trypotane) (75 pages, 1942)	20	מ נ
Tome XII.		
 DE WILDEMAN, E., Le Congo belge possède-t-il des ressources en matières premières pour de la pâte à papier ? (IV-156 pages, 1942) BASTIN, R., La biochimie des moisissures (Vue d'ensemble. Application à des premières pour de la pâte de papier) 	35	5 »
(125 pages, 2 diagrammes, 1942)	35	5 »
3. ADRIAENS, L. et WAGEMANS, G., Contribution à l'étude chimique des sols salins et de leur régétation au Ruanda-Urundi (186 pages, 1 figure, 7 planches, 1943).	5() »

SECTION DES SCIENCES TECHNIQUES

â

Tome I.

1.	FONTAINAS, P., La force motrice pour les petites entreprises coloniales (188 pages, 1935)	19	n
2.	HELLINCKX, L., Études sur le Copal-Congo (Mémoire couronné au Concours annuel de 1935) (64 pages, 7 figures, 1935)	11	¥
3.	DEVROEY, E., Le problème de la Lukuga, exutoire du lac Tanganika (130 pages, 14 figures, 1 planche, 1938).	30	»
4.	FONTAINAS, P., Les exploitations minières de haute montagne au Ruanaa-Orunai (59 pages, 31 figures, 1938).	18	»
5.	DEVROEY, E., Installations sanitaires et épuration des eaux résiduaires au Congo belge (56 pages, 13 figures, 3 planches, 1939).	20	n
6.	DEVROEY, E., et VANDERLINDEN, R., Le lac Kivu (76 pages, 51 figures, 1939)	30	2

Tome II.

1. DEVROEY. E., Le réseau routier au Congo belge et au Ruanda-Urundi (218 pages, 62 figures, 2 cartes, 1939), fr.	60	»
(228 pages, 94 figures, 33 planches, 1940)	65	3)
3. LEGBAYE, M., Grands traits de la Géologie et de la Minéralisation aurifère des régions de Kilo et de Moto (Congo belge) (135 pages, 25 figures, 13 planches,		
1940)	35	»
Tome III.		
1. SPRONCK, R., Mesures hydrographiques effectuées dans la région divagante du bief maritime du fleure Congo. Observation des mouvements des alluvions. Essai de détermination des débits solides (56 pages, 1941) fr.	16	N
2. BETTE, R., Aménagement hydro-électrique complet de la Lufira à « Chutes Cor- net » par régularisation de la rivière 33 pages, 10 planches, 1911	27	'n
 DEVNOEY, E., Le bassin hydrographique congolais, spécialement celui du bief maritime (172 pagés, 6 planches, 4 cartes, 1941; 	50	n
4. DEVROEY, E. (avec la collaboration de DE BACKER, E.), La réglementation sur les constructions au Congo belge (290 pages, 1942)	50	ĸ
		2 C

COLLECTION IN-4°

SECTION DES SCIENCES MORALES ET POLITIQUES

Tome I.

1.	SCHEBESTA, le R. P. P., Die Bambuti-Pygmäen	. vom Ituri (tome I) (I frontispice,)		
	xviii-440 pages, 16 figures, 11 diagrammes,	32 planches, 1 carte, 1938) fr.	2 50	Ŋ,

Tome II.

1.	SCHEBESTA, le R. P.	. P., Die Ban	nbuti-Pygma	ien vom	Ituri	(tom	3 H)	$\langle XI$	1-28	41	ages,		
	189 figures, 5 d	liagrammes,	25 planche	5, 1941)			•			•	. fr.	135	Ŋ

SECTION DES SCIENCES NATURELLES ET MEDICALES

Tome I.

Tome III.		
7 figures, 8 planches, 1 carte, 1934)	40	13
4. POLINARD, E., Le socle ancien inférieur à la série schisto-calcaire du Bas-Congo.	14	"
3. VANDERYST, le R. P. H., L'élevage extensif du gros bétail par les Bampombos et Baholos du Congo portugais (50 pages 5 figures 1933)	14	р
tion préliminaire (108 pages, 28 figures, cartes, plans et croquis, 16 dia- grammes, 10 planches, 1933)	60	,
2. SCAETTA, H., Les précipilations dans le bassin du Kivu et dans les zones limi-	00	"
1. THOREAU, J., et DU TRIEU DE TERDONCK, R., Le gîte d'uranium de Shinkolobwe- Kasolo (Katanga) (20 pages 17 planches 1933)	50	
Tome II.		
Vicariat apostolique du Haut-Kasai (82 pages, 12 figures, 1933)	25	я
7. VANDERYST, le R. P. H., Introduction générale à l'étude agronomique du Haut- Kagai Les domaines districts régions et sous régions céo agronomiques du		
5. ROBYNS, W., Les espèces congolaises du genre Panicum L. (80 pages, 5 plan- ches, 1932)	25	я
tes, 1932)	10	»
5. FONTAINAS, P. et ANSOTTE, M., Perspectives minières de la région comprise entre le Nil le lac Victoria et la frontière orientale du Congo belge (27 pages 2 car-		
10 planches, 1932).	2 6	h
4. SCAETTA, IL, Les famines périodiques dans le Ruanda. — Contribution à l'étude		4
3. VANDERYST, le R. P. H., Introduction à la phytogéographie agrostologique de la province Congo-Kasai. (Les formations et associations) (154 pages 1939)	39	10
le Congo occidental (70 pages, 10 figures, 1932)	20	K
ches, 1931)	20	»
1. ROBINS, W., Les espèces congolaises du genre Digitaria Hall (52 pages, 6 plan-		

SCAETTA.	Н.,	Le	clim	at	écolo	gique	de	la	d 01	sale	C_{i}	ong	o-Nil	(335	pag	es,	61	diag	rar	nmes.		
20	pla	nch	es, 1	ca.	arte,	1934)						•		•	• •	•		•		fr.	100	»

5

.

Tome IV.

 POLINARD, E., La géographie physique de la région du Lubilash, de la Bushimaie et de la Lubi vers le 6° parallèle Sud (38 pages, 9 figures, 4 planches, 2 car- tes, 1935. fr. POLINARD, E., Contribution à l'étude des roches éruptives et des schistes cristallins de la région de Bondo (42 pages, 1 carte, 2 planches, 1935). POLINARD, E., Constitution géologique et pétrographique des bassins de la Kotto et de Martin de Bondo (42 pages, 1 carte, 2 planches, 1935). POLINARD, E., Constitution géologique et pétrographique des bassins de la Kotto et de Martin de Bondo (42 pages, 1 carte, 2 planches, 1935). 	25 15
21 figures, 3 cartes, 13 planches, 1935)	60
Tome V.	
1. ROBYNS, W., Contribution à l'étude des formations herbeuses du district forestier	

1.	ROBYNS, W., Contribution à l'étude des formations herbeuses du district forestier central du Congo belge (151 pages, 3 figures, 2 cartes, 13 planches, 1936). fr.	60	D
2.	SCAETTA, H., La genèse climatique des sols montagnaras de l'Afrique centrate Les formations végétales qui en caractérisent les stades de dégradation (351 pages, 10 planches, 1937).	115	12

Tome VI.

1. GYSIN, M., Recherches géologiques et pétrographiques dans le Katanga méri- dional (259 pages 4 figures 1 carte 4 planches, 1937)	65	n
2. ROBERT, M., Le système du Kundelungu et le système schisto-dolomitique (Première partie) (108 pages, 1940).	30	n
3. ROBERT, M., Le système du Kundelungu et le système schisto-dolomitique (Deuxième partie) (35 pages, 1 tableau hors-texte, 1941)	13	»
4. PASSAU, G., La vallée du Lualaba dans la région des Portes d'Enfer (66 pages, 1 figure 1 planche, 1943)	30	3)

SECTION DES SCIENCES TECHNIQUES

Tome I.

1. MAURY, J., Triangulation du Katanga (140 pages, figure, 1930) fr.	25	2
2. ANTHOINE, R., Traitement des minerais aurifères d'origine filonienne aux mines	20	
d'or de Kilo-Moto (163 pages, 63 croquis, 12 planches, 1933)	00	
3. MAURY, J., Triangulation du Congo oriental (177 pages, 4 fig., 3 planches, 1934).	60	3
Tome II.		
t toman D. Themalagemetter des minerais à or libre à hasse tengur de la mine		
1. ANTHOINE, N., L'amalyamation als minerals a or hore a basse tenear de la mine		

1.	AMINUME, N., L'undugundation des minierais à or ciore à ousse serieur de sa minier		
	du mont Tsi (29 pages, 2 figures, 2 planches, 1936)	10	D
2.	MOLLE, A., Observations magnétiques faites à Élisabethville (Congo helge) pen-		
	dant l'année internationale polaire (120 pages, 16 figures, 3 planches, 1936).	45	
3.	DEHALU, M., et PAUWEN, L., Laboratoire de photogrammétrie de l'Université de		
	Liége. Description, théorie et usage des appareils de prises de vues, du ste-		
	réoplanigraphe C, et de l'Aéromultiplex Zeiss (80 pages, 40 fig., 2 planches,		
	1938)	20	D
4.	TONNEAU, R., et CHARPENTIER, J., Etude de la récupération de l'or et des sables		
	noirs d'un gravier alluvionnaire (Mémoire couronné au Concours annuel de		
	1938) (95 pages, 9 diagrammes, 1 planche, 1939)	35	13
5.	MAURY, J., Triangulation du Bas-Congo (41 pages, 1 carte, 1939)	15	

Tome III.

HERMANS, L., Résultats des observations magnétiques effectuées de 1934 à 1938 pour l'établissement de la carte magnétique du Congo belge (avec une introduction par M. Dehalu) :

1. Fascicule préliminaire. — Apercu des méthodes et nomenclature des Stations,		
(88 pages, 9 figures, 15 planches, 1939)	40	D
2. Fascicule I. — Elisabethville et le Katanga (15 avril 1934-17 janvier 1935 et 1er octo-		
bre 1937-15 janvier 1938) (105 pages, 2 planches, 1941)	50	23
 Fascicule II. — Kivu. Ruanda. Région des Parcs Nationaux (20 janvier 1935- 26 avril 1936) (138 pages, 27 figures, 21 panches, 1941). 	75	20
4. Fascicule III. — Région des Mines d'or de Kilo-Moto, Ituri, Haut-Uele (27 avril- 16 octobre 1936) (71 pages, 9 figures, 15 planches, 1939).	40	2
5. HERMANS, L., et MOLLE, A., Observations magnétiques faites à Élisabethville (Congo belge) pendant les années 1933-1934 (83 pages, 1941)	40	E

Tome IV.

1. ANTHOINE, R., Les méthodes pratiques d'évaluation des gîtes secondaires auri- fères appliquées dans la région de Kilo-Moto (Congo belge) (218 pages, 56 figures, planches, 1941)	75 1
2. DE GRAND Ry, G., Les graben africains et la recherche du pétrole en Afrique orien- tale (77 pages, 4 figures, 1941)	25)
3. DEHALU, M., La gravimétrie et les anomalies de la pesanteur en Afrique orientale (80 pages, 15 figures, 1943)	35 »

Sous presse.

VAN DER KERKEN, G., L'Ethnie Mongo (in-8°).

- Dr PETER SCHUMACHER, M. A., Expedition zu den zentralafrikanischen Kivu-Pygmäen (in-4°) :
- I. Die physische und soziale Umwelt der Kivu-Pygmäen;
- II. Die Kivu-Pygmäen.

SOHIER, A., Le mariage en droit coutumier congolais (in-8°).

DE WILDEMAN, É., Les latex des Euphorbiacées. Considérations générales (in-8°). VAN NITSEN, R., Le pian (in-8°).

POLINARD, E., Etude pétrographique de l'entre-Lulua-Lubilash, du parallèle 7°30' S. à la frontière de l'Angola (in-4°).

LAUDE, N., La Compagnie d'Ostende et son activité coloniale au Bengale (in-8°).

DE WILDEMAN, E., A propos de médicaments antilépreux d'origine végétale (in-8°).

FALLON, F., L'Éléphant africain (in-8°).

ALGRAIN, P., Les Ponts métalliques démontables (in-8°).

ADRIAENS, L., Contribution à l'étude de la toxicité du manioc du Congo belge (in-8°). DUBOIS, A., Chimiothérapie des Trypanosomiases (in-8°).

	Belgique.	Congo belge.	Union postale universelle.
Abonnement annuel Prix par fascicule	fr. 60.— fr. 25.—	fr. 70.— fr. 30.—	fr. 75.— (15 Belgas) fr. 30.— (6 Belgas)
Tome I (1929-1930) Tome II (1931) Tome III (1932) Tome IV (1933) Tome V (1934) Tome VI (1935)	608 pages 694 > 680 > 884 > 738 > 765 >	Tome VII Tome VIII Tome IX Tome X Tome XI Tome XII Tome XIII	(1936) 626 pages (1937) 895 . (1938) (1939)

BULLETIN DES SÉANCES DE L'INSTITUT ROYAL COLONIAL BELGE

M. HAYEZ, Imprimeur de l'Académie royale de Belgique, rue de Louvain, 113, Bruxelles. (Domicile légal: rue de la Chancellerie, 4) N° réf. 2019 Autorisation n. 4760

Made in Belgium