1. Background (previous SE4A conference / 3 days in October 2017, Brussels)

The first edition of the international conference “Sustainable Energy for Africa” (SE4A in short), organized by the Royal Academy for Overseas Sciences of Belgium (RAOS), took place in Brussels (23-25 October 2017, Palace of the Academies).

The following messages were delivered as a conclusion:

--- Science: Energy is a value chain aimed at providing services to society, households and industry, based, for each region of the world, on an optimal mix of secure (24/7/365 supply), affordable and sustainable primary energy sources.

--- Politics: Energy, together with circular economy, is a primary driving force for development – research and innovation as well as education and life-long learning for all are crucial; international collaboration in the field of energy-climate should be encouraged.

--- Follow-up edition in Africa in 2020: academia, industry, policy-makers and civil society should meet again in a conference to report on the latest developments and discuss joint actions in the energy-climate sector in Africa.

The final programme of the previous conference (SE4A, 23-25 October 2017) and the partial audio/video recordings of all presentations are available on the following website:


2. Follow-up edition: SE4A 2020 / 4 days, Monday 2 to Thursday 5 November 2020, Cotonou

The second edition of the international conference “Sustainable Energy for Africa” (SE4A 2020 in short) will take place in Cotonou, Benin, from Monday 2 to Thursday 5 November 2020 and is jointly organized by

— the Royal Academy for Overseas Sciences of Belgium (RAOS in English; ARSOM in French; KAOW in Dutch) – https://www.kaowarsom.be/en/home

— the National Academy of Sciences, Arts and Letters of Benin (ANSALB) – http://www.interacademies.org/Benin.aspx

The five following topics will be dealt with during the first three days (Monday to Wednesday) of the SE4A 2020 conference, addressing an international audience concerned with energy and climate issues (in particular, high-level representatives of the African Union (AU) and the European Union (EU) – more details in Annex):

– Energy policies (including UN “Agenda 2030” and AU “Agenda 2063”):
  1. Energy, associated with circular economy, is a primary driving force for development
  2. Energy that is secure (24/7/365), sustainable, competitive and affordable for all

– Energy value chain (including conversion and end-use technologies)
  3. Towards an ideal energy mix, based on increasing levels of access to energy
  4. The Resource Paradox in Africa – Power Generation Systems

– Research, innovation & education in connection with the energy-intensive sectors
  5. Explore the role of scientific resources and capacity building as a response to needs of emerging countries in the sectors of transport, residential, industry and services

This second international conference will bring together a large number of scientific, technological and political experts from Africa and Europe, from the public and private sectors, who are interested in energy-climate issues in Africa.

The expected outcome of this conference is:

— provide an opportunity for African youth to participate in scientific debates and engage in actions concerning improvements in the energy-climate sector;

— jointly design a response adapted to the energy-climate challenges specific to Africa, based in particular on research, innovation and education;

— focus on international cooperation (South-South, West-East and North-South) in this area, in particular by exploring different funding mechanisms.

Speakers are invited to choose a theme in line with this “concept note”. They will present their topic in plenary session for about 20 minutes, preferably in English. Enough time will be given for questions and answers with the audience. At the end of each session, the authors selected for the posters will have the opportunity to present their work in plenary session for three minutes in English or French. All conference documents (invited papers and posters) will be peer reviewed before being presented at the Cotonou conference and then published in the proceedings.
3. Day 4 of SE4A 2020 (training programme and funding instruments)

The fourth day (Thursday 5 November 2020) will be devoted to seminars at the higher education level. These seminars will be organized by interested stakeholders with the aim of transferring knowledge and skills in areas such as (non-exhaustive list):

— Energy, climate and sustainable development, including policy analysis and impact assessments, as well as awareness raising (online knowledge tools);

— A “solar academy” for young professionals, i.e. a training programme provided by qualified experts, and a visit to a mini-grid;

— Modular energy production (e.g. mobile gas turbines in response to sudden demands) and/or cogeneration plants (heat - electricity);

— The design and development of small hydropower plants, taking advantage of the enormous untapped potential of rivers and small dams;

— Integrated energy modelling aiming at connecting the national energy sector with the energy-intensive sectors (in particular, transport, residential, industry and services);

— Innovative financing mechanisms for the energy sector in Africa, including circular economy (material recycling and energy recovery) – specific seminar on this subject.

For the latter seminar, an invitation will be sent to high-level representatives of governments, the private sector and the public sector (in particular experts in facilities and equipment in energy-related industries) as well as to bilateral and multilateral organizations concerned with the subject. It is generally accepted that reliable, clean and affordable energy can help strengthen the economy and can have a positive impact on job creation.

Finally, a number of cultural and/or technical visits to Benin are scheduled during the week for conference participants and accompanying persons.

4. Conference Organizing Committee – contact persons in Benin and Belgium (non-exhaustive list – to be completed)

— Mahouton Norbert HOUNKONNOU (Prof.), Mathematical sciences, President National Academy of Benin (ANSALB), President Network of African Science Academies (NASAC)

— Hippolyte AGBOTON (Prof. Med. Dr.), Permanent Secretary ANSALB

— Brice SINSIN (Prof.), Agronomic Sciences, member ANSALB and RAOS Academies, former Rector Abomey-Calavi University (2011-2017)

— Raofou N. BADAROU, DG Energie du Ministère des Mines et de l’Energie

— Arnaud Yémalin ZANNOU, energy expert BAI

— Siengui Apollinaire KI, General Secretary WAPP

— Joël AKOWANOU, Director Opérations de MCA Bénin

— Gabriel DEGBEGNI, Coordinator MCA Bénin

— Issa SOME, Vice-rector charged with R&D at the Université de Ouagadougou in Burkina Faso

— Roland GBAGUIDI (ANSALB)

— Catherine JEANDEL, President Conseil académique Université Fédérale Toulouse Midi-Pyrénées, Research Director CNRS (géophysique) in Toulouse
— Georges VAN GOETHEM (Dr. Ir.), Royal Academy for Overseas Sciences of Belgium (RAOS), main organizer of previous SE4A event (RAOS, Brussels, 23-25 Oct. 2017)
— Philippe GOYENS (Prof. Med. Dr.), Permanent Secretary RAOS (ARSOM – KAOW)
— Bernard MAIRY (Ir.), Executive Director, European Society of Engineers and Industrialists
— Marc LOBELLE (Prof. Dr. Ir. Emeritus), Ecole Polytechnique de Louvain (Belgium), expert in e-Infrastructure and e-Services (with long-standing experience in Benin)
— Patrick HENDRICK (Prof. Dr. Ir.), Ecole Polytechnique de Bruxelles (ULB), head of Aero-Thermo-Mechanics Department
— Emanuela COLOMBO (Prof. Dr. Ir.), Dpt. of Energy, Politecnico di Milano (Italy), Rector’s Delegate to Cooperation, UNESCO Chair in Energy for Sustainable Development
— Emmanuel K. ACKOM, PhD, UNEPDTU (Copenhagen), Senior Energy & Climate Expert
— Pépin TCHOUATE HETEU (Dr. Ir.), DEECC Consulting, expert in energy access & security
— Benoît LEGRAND, Coordinator Climate Unit, Enabel, Belgian Development Agency

Addresses of the two organizing Academies: RAOS (Belgium) and ANSALB (Benin)

– Royal Academy for Overseas Sciences of Belgium (RAOS in English) / Académie royale des Sciences d’Outre-Mer (ARSOM in French) / Koninklijke Academie voor Overzeese Wetenschappen (KAOW in Dutch)  
Avenue circulaire 3 – 1180 Brussels, Belgium  
Tel. 32 (0)2 790.39.02 // Fax 32 (0)2 374.98.22  
E-mail: contact_raos@kaowarsom.be // Website: http://www.kaowarsom.be/en/home

– National Academy of Sciences of Benin (ANSALB)  
5th district - Residential Zone - Street 239 - Lot 551  
01 BP 9160 COTONOU, Zongo district  
Tel. (229) 21 31 01 94 // Fax (229) 21 31 31 38  
Website: https://academie-sciences.bj/ and E-mail: ansalb@academie-sciences.bj
Annex – detailed programme of the conference

A. Energy Policies (including United Nations “Agenda 2030” and AU “Agenda 2063”)

1. Energy, together with circular economy, is a primary driving force for development

Energy is crucial (actually it is necessary but not sufficient) for achieving the Sustainable Development Goals (SDGs) adopted by the United Nations in 2015 (“Transforming our World: the 2030 Agenda for Sustainable Development”). Energy is a prerequisite for achieving many of the 17 SDGs. The focus here is on clean energy: SDG 7 (“Ensure access for all to affordable, reliable, sustainable and modern energy”).

In addition, energy has a multiplier effect on two SDGs of particular interest to Africa:

— Sustainable Cities – SDG 11 (“Making cities and human settlements inclusive, safe, resilient and sustainable”) – As African cities are growing, the challenge will be to ensure access for all to adequate, safe and affordable housing and basic services. Transport, in particular, is an essential component of overall sustainable development.


“Africa has an unlimited potential of solar, wind, hydroelectric and geothermal energy resources. We must unleash Africa’s energy potential – both conventional and renewable. Unleashing Africa’s enormous energy potential for Africa will be a major priority for the African Development Bank (AfDB).

“Lighting and Powering Africa” is indeed one of the central themes of many funding organizations in Africa that share the ambitious goal of universal access to energy by 2025.

2. Energy that is secure (24/7/365), sustainable, competitive and affordable for all

In most countries of the world, national energy consumption is divided into four main sectors:

— residential (heating, lighting and household appliances);

— commercial (lighting, heating and cooling of commercial buildings, and provision of water and sewer services);

— industrial users (agriculture, mining, manufacturing and construction);

— transportation (passengers, freight and pipelines).

Most of the energy used in the four sectors mentioned above in the world (and, in particular, in Africa) comes from fossil fuel. A small fraction of primary energy sources – about 20 % – is consumed as electricity, but this fraction could grow dramatically in the coming decades due to the massive electrification of society (source: International Energy Agency).

It should be recalled that per capita electricity demand in Africa is about 620 kWh (still ten times lower than the European average). Paradoxically, the majority of sub-Saharan African countries have untapped energy resources. New electrification strategies and power systems are
being studied in many African countries, particularly those facing high rural-urban migration and high population growth.

With regard to the electricity supply chain, particular attention should be paid to the discussion of advantages and disadvantages between policy-makers and technical experts with regard to:

— centralized generation, generally based on monopolistic systems designed for traditional power plants (fossil fuel, hydroelectric or nuclear fission power plants);

— decentralized generation, generally based on micro or mini-grids mainly designed for renewable energy resources – a mix of the two types of production could be the best solution.

Keeping in mind, however, that mini-grids nowadays can be connected to a main grid, using appropriate technology (*e.g.* smart metering).

**B. Energy value chain (including conversion and end-use technologies)**

3. **Towards an ideal energy mix, based on increasing access to energy**

When studying the ideal energy mix, the political and industrial challenge is multiple: security (24/7/365) of energy carriers that are physically and economically accessible supply to all, and whose environmental impact is limited.

To meet these requirements, countries generally develop “integrated energy planning” strategies, taking into account all key elements of the energy value chain, namely:

— the three primary energy sources (renewable energies, fossil fuel, nuclear fission – these are the three forms of energy available in nature)

— conversion technologies (to make energy usable and easily transportable)

— secondary energy carriers (such as electricity, refined petroleum products, heat, ... and hydrogen in the distant future)

— end-use technologies and infrastructures (in particular electricity transmission and distribution networks)

— energy services (kitchen, domestic comfort, lighting, transport, mobility, communication, etc.).

Moreover, it is quite clear that energy, peace and stability go together: when assessing short-term energy security, special care should be taken to regulatory quality and political stability (absence of violence).

In this context, it is worth recalling the AU key document ”Agenda 2063 – A Common Strategic Framework for Inclusive Growth and Sustainable Development”. This document was prepared through a broad consultation of experts and was adopted in 2015 in Addis Ababa, Ethiopia, by the 24th Assembly of Heads of State and Government of the AU, after 18 months of extensive consultations with all actors in African society. Consultations were held with the following stakeholder groups: private sector; academics and think-tanks; civil society; planning experts; sectoral ministries; etc.

In the first ten-year implementation plan 2014-2023 of the “Agenda 2063”, there are ambitious political and industrial commitments related to energy, aimed at “improving living standards” and “contributing to industrial/manufacturing growth and the comfort of African citizens”. It is also proposed that cities recycle at least 50 % of the waste they produce.
Three objectives (referring to 2013) are of particular interest in the energy-climate field:
— increase the share of renewable energies in total energy production;
— reduce the share of fossil fuel in total energy production;
— electricity supply and connectivity will increase by 50%.


4. The Resource Paradox in Africa – Power Generation Systems

Paradoxically, many countries are rich in natural resources, but their populations remain poor. The analysis indicates that Africa is indeed rich in energy resources but poor in access to energy:

— 66% of the population of sub-Saharan Africa has no access to electricity, with a wide disparity between urban and rural areas.

— 66% of energy investments in sub-Saharan Africa are for export rather than domestic use (figures to be updated when WEO 2019 will be issued).

Population dynamics in Africa will affect many development sectors. The African population will migrate and become highly urbanized, feeding the current megacities.

One of the main challenges is the sustainable supply of energy, water and food products (“nexus” approach) in large cities, which are the main centres of consumption and growth. Among the most populated urban areas in Africa are Lagos in Nigeria (>22 million inhabitants), Cairo in Egypt (>20 million inhabitants), Kinshasa in the Democratic Republic of Congo (>17 million inhabitants) and Gauteng (Johannesburg and Pretoria) in South Africa (>12 million inhabitants).

C. Research, innovation & education in connection with the energy-intensive sectors

5. Explore the role of scientific resources and capacity building as a response to needs of emerging countries in the sectors of transport, residential, industry and services

Human capital training is another major challenge. Research, innovation and education clearly have to play a role in development and it is important to understand their global impact on the multiple components of society. Education and life-long learning programmes are particularly necessary to support energy development policies, aimed at providing robust solutions to the many challenges facing emerging economies. For example, sub-Saharan African countries will have to create about 18 million new jobs each year over the next quarter century, equivalent to the current population of Burkina Faso.

Agenda 2063 also contains a number of proposals in the field of higher education, including an African virtual online university with open, distance and online learning resources, and an African education accreditation agency with a common system of university qualifications (similar to the European student exchange programme Erasmus).

Special attention also should be devoted to the supervision and coordination of research and training institutions, setting their priorities and developmental needs, monitoring and finalizing their research programmes and valorizing their findings and results.
Finally, since countries cannot solve all problems on their own (especially in the fields of energy, water and food), international scientific cooperation (South-South, West-East and North-South) is necessary. Concerted efforts are needed to foster global exchanges of knowledge and skills, which will contribute to improving external relations and developing diplomacy through science.

“To succeed, we must work together. As an African proverb says:

“If you want to go fast, go alone. If you want to go far, go together.”